# Seeing the Difference: Some Research Results in Difference Equations 

Gene Quinn

## Research in Mathematics

## Research in Mathematics?

How is that possible?

## Research in Mathematics

Research in Mathematics?

How is that possible?

Isn't Mathematics just a static collection of known facts?

## Research in Mathematics

Research in Mathematics?

How is that possible?

Isn't Mathematics just a static collection of known facts?

The answer is an emphatic NO!

## Research in Mathematics

Mathematics is a constantly evolving and growing body of knowledge.

## Research in Mathematics

Mathematics is a constantly evolving and growing body of knowledge.

So, how is research in mathematics done?

## Research in Mathematics

## You get the problem in your head,

## Research in Mathematics

You get the problem in your head,
then, you walk around all day thinking about it ...

## Research in Mathematics

You get the problem in your head,
then, you walk around all day thinking about it ...
and feeling very happy.
Gerry Ladas

## Research in Mathematics

You get the problem in your head,
then, you walk around all day thinking about it ...
and feeling very happy.
Gerry Ladas

## Research in Mathematics

To many professional Mathematicians, research is an important part of their persona.

## Research in Mathematics

To many professional Mathematicians, research is an important part of their persona.

If I didn't do research, how could I face my mother?

Gerry Ladas

## Research in Mathematics

Prior to 1993, most of the papers published by the URI research group were in differential equations.

## Research in Mathematics

Prior to 1993, most of the papers published by the URI research group were in differential equations.

In 1993, the group decided to shift their focus to difference equations.

## Research in Mathematics

We didn't know whether we were heading into the Mathematical equivalent of a desert or not ...

## Research in Mathematics

As it turned out, the streets are paved with gold . . .

## Research in Mathematics

As it turned out, the streets are paved with gold . . .

You just have to be strong enough to pick it up.

Ed Grove

## Research in Mathematics

As it turned out, the streets are paved with gold . . .

You just have to be strong enough to pick it up.

Ed Grove



## Research in Mathematics

Your 5-Year Research Plan
Presented by Jim Yorke
11th International Conference on
Difference Equations

## Research in Mathematics

Your 5-Year Research Plan
Presented by Jim Yorke
11th International Conference on
Difference Equations

Opening sentence:
I sincerely hope you haven't got one ...

## Research in Mathematics

If you visit Gerry Ladas' webpage it says:
Area of Research at the Present Time,
which suggests the possibility of another switch.

## Research in Mathematics

If you visit Gerry Ladas' webpage it says:
Area of Research at the Present Time,
which suggests the possibility of another switch.

If I wasn't doing difference equations, l'd probably be working in combinatorics

## Gerry Ladas

## Research in Mathematics

If you are thinking of switching specialties, you would have to plan on spending a year or so reading the literature in your new area

Orlando Merino

## Research in Mathematics

If you are thinking of switching specialties, you would have to plan on spending a year or so reading the literature in your new area

## Orlando Merino



## Research in Mathematics

At the University of Rhode Island, there is a very active group doing research in difference equations.

## Research in Mathematics

At the University of Rhode Island, there is a very active group doing research in difference equations.

A key ingredient in sustaining the level of research is a graduate course in difference equations research runs every semester.

## Research in Mathematics

It's very unpredictable.

The way it works is, somebody gets and idea, and we try to pick up the ball and run with it.

## Ed Janowski

## Research in Mathematics

But you've already taken this course six times . . .

## Staff member, URI registrar's office

## Research Area

AMS Subject Classification 39A11

## Research Area

AMS Subject Classification 39A11

Stability and asymptotics of difference equations;
oscillatory and periodic solutions, etc.

## Difference Equations

A difference equation is an equation of the form

$$
x_{n+1}=f\left(x_{n}\right), \quad n=0,1, \ldots
$$

## Difference Equations

A difference equation is an equation of the form

$$
x_{n+1}=f\left(x_{n}\right), \quad n=0,1, \ldots
$$

A solution of a difference equation is a sequence

$$
\left\{x_{n}\right\}_{n=0}^{\infty}
$$

that satisfies the difference equation.

## Difference Equations

The combination of a difference equation

$$
x_{n+1}=f\left(x_{n}\right), \quad n=0,1, \ldots
$$

and an initial condition $x_{0}$ uniquely determines a solution.

## Difference Equations

The combination of a difference equation

$$
x_{n+1}=f\left(x_{n}\right), \quad n=0,1, \ldots
$$

and an initial condition $x_{0}$ uniquely determines a solution. The solution is the sequence

$$
\left\{x_{0}, f\left(x_{0}\right), f^{2}\left(x_{0}\right), f^{3}\left(x_{0}\right), \ldots\right\}
$$

## Historical Background

The study of systems of this type was pioneered by the French Mathematicians Pierre Fatou and Gaston Julia in the first quarter of the twentieth century.

## Historical Background

The study of systems of this type was pioneered by the French Mathematicians Pierre Fatou and Gaston Julia in the first quarter of the twentieth century.

They explored maps of the form

$$
z_{n+1}=\frac{\alpha+\beta z}{\gamma+\delta z}, \quad z \in \mathbb{C}
$$

## Historical Background

In 1975 Li and Yorke published their celebrated

Period Three Implies Chaos
paper (American Mathematical Monthly
82(1975), 985-992).

## Historical Background

In 1975 Li and Yorke published their celebrated

Period Three Implies Chaos
paper (American Mathematical Monthly
82(1975), 985-992).
This paper sparked a great deal of interest in dynamical systems and chaos.

## 39A11 People



July 26, 2006
ICDEA 2006
Kyoto University

## The Mandelbrot Set

Around the time of Li and Yorke's paper, Benoit Mandelbrot was producing spectacular computer graphics based on the work of Julia.

## The Mandelbrot Set

Around the time of Li and Yorke's paper, Benoit Mandelbrot was producing spectacular computer graphics based on the work of Julia.

The best known of Mandelbrot's results investigates the difference equation

$$
z_{n+1}=z_{n}^{2}+c, \quad c \in \mathbb{C}
$$

## The Mandelbrot Set



$$
z_{n+1}=z_{n}^{2}+c, \quad z_{0}=0, \quad c \in \mathbb{C}
$$

## The Mandelbrot Set



## The Mandelbrot Set



## Rational Difference Equations

The recent focus of the URI research group has been rational difference equations.

## Rational Difference Equations

The recent focus of the URI research group has been rational difference equations.

The following is a first order rational difference equation:

$$
x_{n+1}=\frac{\alpha+\beta x_{n}}{A+B x_{n}}, \quad n=0,1, \ldots
$$

## Rational Difference Equations

The following are second and third order rational difference equations:

$$
x_{n+1}=\frac{\alpha+\beta x_{n}+\gamma x_{n-1}}{A+B x_{n}+C x_{n-1}}, \quad n=0,1, \ldots
$$

## Rational Difference Equations

## The following are second and third order

 rational difference equations:$$
\begin{gathered}
x_{n+1}=\frac{\alpha+\beta x_{n}+\gamma x_{n-1}}{A+B x_{n}+C x_{n-1}}, \quad n=0,1, \ldots \\
x_{n+1}=\frac{\alpha+\beta x_{n}+\gamma x_{n-1}+\delta x_{n-2}}{A+B x_{n}+C x_{n-1}+D x_{n-2}}, n=0,1, \ldots
\end{gathered}
$$

## Difference Equations

The following questions regarding solution sequences are of interest:

- What happens as $n \rightarrow \infty$ ?


## Difference Equations

The following questions regarding solution sequences are of interest:

- What happens as $n \rightarrow \infty$ ?
- Does the sequence approach a limit?


## Difference Equations

The following questions regarding solution sequences are of interest:

- What happens as $n \rightarrow \infty$ ?
- Does the sequence approach a limit?
- Does the sequence remain bounded?


## Difference Equations

The following questions regarding solution sequences are of interest:

- What happens as $n \rightarrow \infty$ ?
- Does the sequence approach a limit?
- Does the sequence remain bounded?
- Does the sequence become periodic?


## Rational Difference Equations

The following third order rational difference equation exhibits all of these behaviors:

$$
x_{n+1}=\frac{\alpha+\beta x_{n}+\gamma x_{n-1}+\delta x_{n-2}}{A+B x_{n}}, n=0,1, \ldots
$$

## Rational Difference Equations

The following third order rational difference equation exhibits all of these behaviors:
$x_{n+1}=\frac{\alpha+\beta x_{n}+\gamma x_{n-1}+\delta x_{n-2}}{A+B x_{n}}, n=0,1, \ldots$
As it turns out, the behavior of solutions is almost entirely determined by the parameters $\gamma, \beta, \delta$ and $A$.

## Rational Difference Equations

When $\gamma<\beta+\delta+A$, every solution of the third order rational difference equation

$$
x_{n+1}=\frac{\alpha+\beta x_{n}+\gamma x_{n-1}+\delta x_{n-2}}{A+B x_{n}}, n=0,1, \ldots
$$

converges to an equilibrium or fixed point $\bar{x}$

## Rational Difference Equations

An equilibrium or fixed point $\bar{x}$ satisfies the equation

$$
\bar{x}=\frac{\alpha+\beta \bar{x}+\gamma \bar{x}+\delta \bar{x}}{A+B \bar{x}}
$$

## Rational Difference Equations

An equilibrium or fixed point $\bar{x}$ satisfies the equation

$$
\bar{x}=\frac{\alpha+\beta \bar{x}+\gamma \bar{x}+\delta \bar{x}}{A+B \bar{x}}
$$

It can be shown that if a solution sequence converges to a value, that value must be a fixed point.

## Rational Difference Equations

When $\gamma=\beta+\delta+A$, every solution of the third order rational difference equation

$$
x_{n+1}=\frac{\alpha+\beta x_{n}+\gamma x_{n-1}+\delta x_{n-2}}{A+B x_{n}}, n=0,1, \ldots
$$

converges to a periodic solution with period 2,

$$
\phi, \psi, \phi, \psi, \ldots
$$

## Rational Difference Equations

When $\gamma>\beta+\delta+A$, the third order rational difference equation

$$
x_{n+1}=\frac{\alpha+\beta x_{n}+\gamma x_{n-1}+\delta x_{n-2}}{A+B x_{n}}, n=0,1, \ldots
$$

has unbounded solutions.

## Periodic Solutions

## Some difference equations have every solution periodic with the same period.

## Periodic Solutions

## Some difference equations have every

 solution periodic with the same period.$$
x_{n+1}=\frac{1}{x_{n}}, \quad n=0,1, \ldots
$$

has every solution periodic with period 2 .

## Periodic Solutions

It's not as obvious as the previous example, but

$$
x_{n+1}=\frac{x_{n}}{x_{n-1}}, \quad n=0,1, \ldots
$$

has every solution periodic with period 6 .

## Boundedness

## Some rational difference equations have

 the property that every solution is bounded.
## Boundedness

Some rational difference equations have the property that every solution is bounded.

Many Mathematical biologists consider this property an absolute must for a population model.

## Rational Difference Equations

As it turns out, a rational difference equation that has all possible terms, such as
$x_{n+1}=\frac{\alpha+\beta x_{n}+\gamma x_{n-1}+\delta x_{n-2}}{A+B x_{n}+C x_{n-1}+D x_{n-2}}, n=0,1, \ldots$
with nonnegative parameters and initial conditions also has every solution bounded.

## Proof of Boundedness

## Consider the finite set of nonnegative real

 numbers:$$
\{\alpha, \beta, \gamma, \delta\}
$$

## Proof of Boundedness

Consider the finite set of nonnegative real numbers:

$$
\{\alpha, \beta, \gamma, \delta\}
$$

This set has a maximum, call it $M$.

## Proof of Boundedness

Likewise, the set of parameters from the denominator,

$$
\{A, B, C, D\}
$$

has a minimum, call it $m$.

## Rational Difference Equations

Regardless of the values of the $x$ 's, if I replace the parameters in the numerator with their maximum, $M$, I can write the inequalities

$$
\begin{aligned}
& \alpha+\beta x_{n}+\gamma x_{n-1}+\delta x_{n-2} \\
& \leq M+M x_{n}+M x_{n-1}+M x_{n-2} \\
& =M\left(1+x_{n}+x_{n-1}+x_{n-2}\right)
\end{aligned}
$$

## Rational Difference Equations

Now replace the parameters in the denominator with their minimum, $m$, and write the inequalities

$$
\begin{aligned}
& A+B x_{n}+C x_{n-1}+D x_{n-2} \\
& \geq m+m x_{n}+m x_{n-1}+m x_{n-2} \\
& =m\left(1+x_{n}+x_{n-1}+x_{n-2}\right)
\end{aligned}
$$

## Rational Difference Equations

We made the numerator larger and the denominator smaller, so we can write

$$
\begin{aligned}
& x_{n+1}=\frac{\alpha+\beta x_{n}+\gamma x_{n-1}+\delta x_{n-2}}{A+B x_{n}+C x_{n-1}+D x_{n-2}} \\
& \leq \frac{M\left(1+x_{n}+x_{n-1}+x_{n-2}\right)}{m\left(1+x_{n}+x_{n-1}+x_{n-2}\right)}=\frac{M}{m}
\end{aligned}
$$

## Applications

The most famous scientist at URI is probably Saul Salia, who models marine populations. He mostly uses differential equations.

## Applications

The most famous scientist at URI is probably Saul Salia, who models marine populations. He mostly uses differential equations.

He once told me he thought difference equations were much more appropriate, but he used differential equations because they are much better understood.

Ed Grove

## Some Quotes

Now, we all know the reason we do this [research] is because we enjoy doing it.

## Some Quotes

Now, we all know the reason we do this [research] is because we enjoy doing it.

But, when people ask you why you do this, they won't believe that.

Ed Grove

## Some Quotes

I don't study these equations to become famous as the person who discovered something.

I don't care about that.

## Some Quotes

I don't study these equations to become famous as the person who discovered something.

I don't care about that.
I study them because they are there and they have to be investigated.

Gerry Ladas

## Some Quotes

We are desparately trying to discover results by any means we can.

Gerry Ladas

## Some Quotes

If Grove hadn't been hit by that car, we would have proved that [theorem] last summer

Gerry Ladas

## Some Quotes

Why aren't these equations in every high school Mathematics book?

## Some Quotes

Why aren't these equations in every high school Mathematics book?

In 50 years, they will be.

Gerry Ladas

## The End

## Thank You!

