Theorem:(4.6.3) Given $f: A \rightarrow \mathbb{R}$ and a limit point c of A, then

$$
\lim _{x \rightarrow c} f(x)=L \quad \text { if and only if } \quad \lim _{x \rightarrow c^{-}} f(x)=L=\lim _{x \rightarrow c^{+}} f(x)
$$

That is, the functional limit $\lim _{x \rightarrow c}$ exists if and only if the left and right hand functional limits both exist, and are equal.

Proof. (\Rightarrow) First assume

$$
\lim _{x \rightarrow c} f(x)=L
$$

and suppose $\epsilon>0$ is given. Then there exists a $\delta>0$ such that

$$
|f(x)-L|<\epsilon \quad \text { whenever } \quad|x-c|<\delta
$$

Now $|x-c|<\delta$ is equivalent to the double inequality $-\delta<x-c<\delta$, so
if $0<x-c<\delta$ then $|x-c|<\delta$ and therefore $|f(x)-L|<\epsilon$
which establishes that

$$
|f(x)-L|<\epsilon \quad \text { whenever } \quad 0<x-c<\delta \quad \text { so } \quad \lim _{x \rightarrow c^{+}} f(x)=L
$$

The other part of the double inequality implies that
if $-\delta<x-c<0 \Rightarrow 0<c-x<\delta$ then $|x-c|<\delta \quad$ which implies $|f(x)-L|<\epsilon$ and we have established that

$$
|f(x)-L|<\epsilon \quad \text { whenever } \quad 0<c-x<\delta \quad \text { so } \quad \lim _{x \rightarrow c^{-}} f(x)=L
$$

so

$$
\lim _{x \rightarrow c} f(x)=L \quad \text { implies } \quad \lim _{x \rightarrow c^{-}} f(x)=L=\lim _{x \rightarrow c^{+}} f(x)
$$

(\Leftarrow) Now suppose $\lim _{x \rightarrow c^{-}} f(x)=L=\lim _{x \rightarrow c^{+}} f(x)$. Then by definition, given $\epsilon>0$, there exists a δ_{1} such that $|f(x)-L|<\epsilon$ whenever $0<x-c<\delta_{1}$
and a

$$
\delta_{2} \text { such that }|f(x)-L|<\epsilon \quad \text { whenever } \quad 0<c-x<\delta_{2}
$$

Let δ be the smaller of δ_{1} and δ_{2}. Then since

$$
0<x-c<\delta \quad \text { or } \quad 0<c-x<\delta \quad \text { is equivalent to } \quad|x-c|<\delta
$$

we have that

$$
|f(x)-L|<\epsilon \quad \text { whenever } \quad|x-c|<\delta
$$

which establishes that $\lim _{x \rightarrow c} f(x)=L$.

