Theorem:(4.6.3) Given $f: A \to \mathbb{R}$ and a limit point c of A, then

 $\lim_{x \to c} f(x) = L \quad \text{if and only if} \quad \lim_{x \to c^-} f(x) = L = \lim_{x \to c^+} f(x)$

That is, the functional limit $\lim_{x\to c}$ exists if and only if the left and right hand functional limits both exist, and are equal.

Proof. (\Rightarrow) First assume

$$\lim_{x \to c} f(x) = L$$

and suppose $\epsilon > 0$ is given. Then there exists a $\delta > 0$ such that

$$|f(x) - L| < \epsilon$$
 whenever $|x - c| < \delta$

Now $|x - c| < \delta$ is equivalent to the double inequality $-\delta < x - c < \delta$, so

 $\text{if} \quad 0 < x - c < \delta \quad \text{then} \quad |x - c| < \delta \quad \text{and therefore} \quad |f(x) - L| < \epsilon \\$

which establishes that

$$|f(x) - L| < \epsilon$$
 whenever $0 < x - c < \delta$ so $\lim_{x \to c^+} f(x) = L$

The other part of the double inequality implies that

if $-\delta < x - c < 0 \Rightarrow 0 < c - x < \delta$ then $|x - c| < \delta$ which implies $|f(x) - L| < \epsilon$

and we have established that

$$|f(x) - L| < \epsilon$$
 whenever $0 < c - x < \delta$ so $\lim_{x \to c^{-}} f(x) = L$

 \mathbf{SO}

$$\lim_{x \to c} f(x) = L \quad \text{implies} \quad \lim_{x \to c^{-}} f(x) = L = \lim_{x \to c^{+}} f(x)$$

(<) Now suppose $\lim_{x\to c^-} f(x) = L = \lim_{x\to c^+} f(x)$. Then by definition, given $\epsilon > 0$, there exists a

$$\delta_1$$
 such that $|f(x) - L| < \epsilon$ whenever $0 < x - c < \delta_1$

and a

$$\delta_2$$
 such that $|f(x) - L| < \epsilon$ whenever $0 < c - x < \delta_2$

Let δ be the smaller of δ_1 and δ_2 . Then since

$$0 < x - c < \delta$$
 or $0 < c - x < \delta$ is equivalent to $|x - c| < \delta$

we have that

$$|f(x) - L| < \epsilon$$
 whenever $|x - c| < \delta$

which establishes that $\lim_{x\to c} f(x) = L$.