Theorem:(4.6.8) A function that is continuous on a compact set K is uniformly continuous on K.

Proof. Suppose $\epsilon>0$ is given. The continuity of f on K guarantees that for each $x \in K$, there exists a $\delta_{x}>0$, which depends on x, such that

$$
|f(x)-f(y)|<\frac{\epsilon}{2} \quad \text { whenever } \quad|x-y|<\delta_{x} \quad \text { and } \quad y \in K
$$

Now form an open cover for K by taking the union of the ($\delta_{x} / 2$)-neighborhood of each $x \in K$,

$$
O=\bigcup_{x \in K} V_{\frac{1}{2} \delta_{x}}(x)
$$

By hypothesis K is compact, so there exists a finite subcover corresponding to a finite set of points $\left\{x_{1}, \ldots, x_{n}\right\}$ in K,

$$
K \subseteq V_{\frac{1}{2} \delta_{x_{1}}}\left(x_{1}\right) \cup V_{\frac{1}{2} \delta_{x_{2}}}\left(x_{2}\right) \cup \cdots \cup V_{\frac{1}{2} \delta_{x_{n}}}\left(x_{n}\right)
$$

Because n is finite, the set of $\delta_{x_{i}}$ values has a minimum, which must be positive, so let

$$
\delta=\min \left\{\frac{1}{2} \delta_{x_{1}}, \frac{1}{2} \delta_{x_{2}}, \ldots, \frac{1}{2} \delta_{x_{n}}\right\}
$$

Now suppose $x, y \in K$ are arbitrarily chosen elements of K with $|x-y|<\delta$. Because the ($\delta_{x_{i}} / 2$)-neighborhoods form an open cover for K, there is some x_{i} such that

$$
\left|x-x_{i}\right|<\frac{1}{2} \delta_{x_{i}}<\delta_{x_{i}} \quad \text { which implies that } \quad\left|f(x)-f\left(x_{i}\right)\right|<\frac{\epsilon}{2}
$$

Because $|x-y|<\delta$, by the triangle inequality

$$
\left|y-x_{i}\right| \leq|y-x|+\left|x-x_{i}\right|<\delta+\frac{1}{2} \delta_{x_{i}}<\delta_{x_{i}}
$$

since δ is the smallest value of $\delta_{x_{i}} / 2$, but the $\delta_{x_{i}}$ values were chosen so that

$$
\left|f(y)-f\left(x_{i}\right)\right|<\frac{\epsilon}{2} \quad \text { whenever } \quad\left|y-x_{i}\right|<\delta_{x_{i}}
$$

so, using the triangle inequality again, we obtain

$$
|f(y)-f(x)| \leq\left|f(y)-f\left(x_{i}\right)\right|+\left|f\left(x_{i}\right)-f(x)\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
$$

so we can say that there exists a $\delta>0$ such that

$$
|f(y)-f(x)|<\epsilon \quad \text { whenever } \quad|x-y|<\delta \quad \text { and } \quad x, y \in K
$$

which estabishes that f is uniformly continuous on K.

