1. Part a)

We want to show that for any $s \in[0,2]$, there are two elements x and y in the Cantor set C with the property that $x+y=s$. This means that the set of all pairwise sums of elements of C is the interval $[0,2]$.

$$
\{x+y \mid x, y \in C\}=[0,2]
$$

Recall that C_{1} is the interval $[0,1]$ with the middle third removed:

$$
C_{1}=\left[0, \frac{1}{3}\right] \cup\left[\frac{2}{3}, 1\right]
$$

Let $s \in[0,2]$ be an arbitrary real number between 0 and 2, inclusive.
We begin by arguing that there are two elements x_{1} and y_{1} with $x_{1}+y_{1}=s$.

Solutions of the equation $x+y=s$ lie on a straight line with equation $y=-x+s$, which is a line with slope -1 and y-intercept s (the x intercept is also s). If we graph members of this family of lines with various values of s on the same set of axes with C_{1}, we get the following picture:

A bit of thought and possibly some trial-and-error computations should convince you that it is impossible to draw a line with slope -1 and y-intercept ≤ 2 that does not intersect C_{1} (the four shaded squares). Consequently, for any given $s \in[0,2]$, we can find at least one pair of values $x_{1}, y_{1} \in C_{1}$ such that the point $\left(x_{1}, y_{1}\right)$ lies on the line $y=-x+s$, which is equivalent to saying a pair $\left(x_{1}, y_{1}\right) \in C_{1}$ such that $x_{1}+y_{1}=s$.

Now consider what happens with C_{2}. Each of the four squares in C_{1} ends up subdivided in exactly the same way $[0,1]$ was subdivided to produce C_{1} : So we can construct an induction argument in the following way. We know that for any $s \in[0,2]$, the line $x+y=s$ intersects one of the four square shaded region

Now we can construct an induction argument in the following way. We know that for any $s \in[0,2]$, the line $x+y=s$ intersects one of the four square shaded regions in C_{1}. Now suppose the line $s=x+y$ intersects C_{n} at the point $\left(x_{n}, y_{n}\right)$, which means it touches at least one of the shaded squares in C_{n}. Moving to the $n+1^{s t}$, we remove the middle third of the shaded region, but this leaves a smaller image identical to C_{1}, so by the same argument as we used for C_{1}, the line $x+y=s$ must intersect C_{n+1} at some point $\left(x_{n+1}, y_{n+1}\right)$.

2. Part B)

By the induction argument presented in part a), we produced a sequence of pairs x_{n}, y_{n} with $x_{n}+y_{n}=s$. Because we can't be sure which shaded square of C_{n} the line $x+y=s$ intersects, we can't say that x_{n} converges. However, it is bounded, so the Bolzano-Weierstrass Theorem guarantees the existence of a convergent subsequence $x_{n_{i}}$. Suppose $\lim x_{n_{i}}=x$.

Because $x_{n}+y_{n}=s$ for every $n, y_{n}=s-x_{n}$, so $\lim y_{n}=y=s-x$. It remains to show that x and y are in

$$
C=\bigcap_{n=1}^{\infty} C_{n}
$$

We can say that all terms of $\left(x_{n_{i}}\right)$ are in C_{1}, and because C_{1} is closed, so is the $\lim x_{n_{i}}=x$. Next, all of $\left(x_{n_{i}}\right)$ except $x_{n_{1}}$ is in C_{2}, which is closed, so $x \in C_{2}$, all but $x_{n_{1}}$ and $x_{n_{2}}$ are in C_{3}, which is also closed, and so on, so that for any $k \in \mathbb{N}$, all terms after $x_{n_{k}}$ are in C_{k}, a closed set, so $\lim x_{n}=x$ is in C_{k} as well. Because k was arbitrary, this means x belongs to C_{k} for every $k \in \mathbb{N}$, which means that

$$
x \in \bigcap_{n=1}^{\infty} C_{n}=C
$$

A similar argument works for y, so $x+y=s$ with $x, y \in C$.

