
1. Part a)

We want to show that for any s ∈ [0, 2], there are two elements x and
y in the Cantor set C with the property that x + y = s. This means
that the set of all pairwise sums of elements of C is the interval [0, 2].

{x + y | x, y ∈ C} = [0, 2]

Recall that C1 is the interval [0, 1] with the middle third removed:

C1 =

[

0,
1

3

]

∪

[

2

3
, 1

]
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Let s ∈ [0, 2] be an arbitrary real number between 0 and 2, inclusive.

We begin by arguing that there are two elements x1 and y1 with
x1 + y1 = s.

Solutions of the equation x+y = s lie on a straight line with equation
y = −x + s, which is a line with slope −1 and y-intercept s (the x-
intercept is also s). If we graph members of this family of lines with
various values of s on the same set of axes with C1, we get the following
picture:

A bit of thought and possibly some trial-and-error computations
should convince you that it is impossible to draw a line with slope
−1 and y-intercept ≤ 2 that does not intersect C1 (the four shaded
squares). Consequently, for any given s ∈ [0, 2], we can find at least
one pair of values x1, y1 ∈ C1 such that the point (x1, y1) lies on the
line y = −x + s, which is equivalent to saying a pair (x1, y1) ∈ C1 such
that x1 + y1 = s.
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Now consider what happens with C2. Each of the four squares in
C1 ends up subdivided in exactly the same way [0, 1] was subdivided
to produce C1: So we can construct an induction argument in the
following way. We know that for any s ∈ [0, 2], the line x + y = s

intersects one of the four square shaded region

Now we can construct an induction argument in the following way.
We know that for any s ∈ [0, 2], the line x + y = s intersects one of
the four square shaded regions in C1. Now suppose the line s = x + y

intersects Cn at the point (xn, yn), which means it touches at least
one of the shaded squares in Cn. Moving to the n + 1st, we remove
the middle third of the shaded region, but this leaves a smaller image
identical to C1, so by the same argument as we used for C1, the line
x + y = s must intersect Cn+1 at some point (xn+1, yn+1).

2. Part b)

By the induction argument presented in part a), we produced a se-
quence of pairs xn, yn with xn +yn = s. Because we can’t be sure which
shaded square of Cn the line x + y = s intersects, we can’t say that xn

converges. However, it is bounded, so the Bolzano-Weierstrass Theo-
rem guarantees the existence of a convergent subsequence xni

. Suppose
lim xni

= x.



4

Because xn + yn = s for every n, yn = s− xn, so lim yn = y = s− x.
It remains to show that x and y are in

C =

∞
⋂

n=1

Cn

We can say that all terms of (xni
) are in C1, and because C1 is closed,

so is the lim xni
= x. Next, all of (xni

) except xn1
is in C2, which is

closed, so x ∈ C2, all but xn1
and xn2

are in C3, which is also closed,
and so on, so that for any k ∈ N, all terms after xnk

are in Ck, a closed
set, so lim xn = x is in Ck as well. Because k was arbitrary, this means
x belongs to Ck for every k ∈ N, which means that

x ∈

∞
⋂

n=1

Cn = C

A similar argument works for y, so x + y = s with x, y ∈ C.


