Exercise (2.6.2). Note the comments under the listing of the theorem on page 59. Let x be the limit of the sequence. Add and subtract x within the absolute value expression.

Exercise (2.6.3). One of the sequences we discussed in class on Tuesday, 1/22 could be used as the example.
Exercise (2.6.4). Review the identities in Exercise 1.2.5.
Exercise (2.6.5). (a) Use the triangle inequality (b) Add and subtract $x_{n} y_{m}$ within the absolute value expression.
Exercise (2.6.6). (a) Start with an interval $\left[a_{i}, b_{i}\right]$ where b_{i} is an upper bound for the set, and a_{i} is not an upper bound. (b) Let $I_{n}=\left[a_{n}, b_{n}\right]$ and apply the MCT to the sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$. (c) As in (b) start with a set of nested intervals. This time argue the sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are bounded, so that the Bolzano-Weirstrass theorem applies. (d) Use an argument similar to the proof of the Bolzano-Weierstrass theorem, but instead of the NIP, use the fact that the intervals are nested and shrinking to width 0 together with the Cauchy Criterion to establish convergence.

