Hint 1. To compute

$$\lim_{n \to \infty} h_n(x) = \lim_{n \to \infty} \frac{\sin nx}{n}$$

note that for any n and x,

$$-1 \le \sin nx \le 1$$
 which implies that $-\frac{1}{n} \le \frac{\sin nx}{n} \le \frac{1}{n}$

For uniform convergence, given $\epsilon > 0$, try to choose N in the definition of the limit so that it does not depend on x.

Hint 2. How does the picture change for if we replace *n* in the denominator by \sqrt{n} ?

Hint 3. What is the value of $h'_n(x)$ if $x = \pi/2$? Are there other values of x that have this property?

Hint 4. Note that, for $x \in [0, 1]$,

$$\frac{x^n}{n} \le \frac{1}{n}$$

Hint 5. Compare the functions

$$g_n(x) = \frac{nx + x^2}{2n}$$

to Example 6.2.2 (i).

Hint 6. For

$$f_n(x) = \frac{nx^2 + 1}{2n + x}$$

consider the maximum and minimum values of

$$|f'_n(x) - x| = \left|\frac{-nx^2 - x^3 + 1}{4n^2 + 4nx + x^2}\right|$$

on the set [-M, M]. Can these be written in a way that does not depend on x?

Hint 7. The result of applying the mean value theorem to $f_n - f_m$ is $(f_n(x) - f_m(x)) - (f_n(x_0) - f_m(x_0)) = (fn'(\alpha) - f'_m(\alpha))(b - a)$