Hint 1. To compute

$$
\lim _{n \rightarrow \infty} \frac{\sin n x}{n}
$$

note that for any n and x,

$$
-1 \leq \sin n x \leq 1 \quad \text { which implies that } \quad-\frac{1}{n} \leq \frac{\sin n x}{n} \leq \frac{1}{n}
$$

Hint 2. A sequence $\left(f_{n}(x)\right)$ with $f_{n}: A \rightarrow \mathbb{R}$ converges uniformly to a limit function $f: A \rightarrow \mathbb{R}$ if for every $\epsilon>0$, there exists an $N \in \mathbb{N}$ such that

$$
\left|f_{n}(x)-f(x)\right|<\epsilon \quad \text { whenever } \quad n \geq N, \quad \text { for every } \quad x \in A
$$

One way a sequence $\left(f_{n}(x)\right)$ with $f_{n}: A \rightarrow \mathbb{R}$ fails to converge uniformly to a limit function $f: A \rightarrow \mathbb{R}$ is if for any $\epsilon>0$, for every $N \in \mathbb{N}$, there exists an $x \in A$ that makes

$$
\left|f_{n}(x)-f(x)\right| \geq \epsilon \quad \text { regardless of the value of } n
$$

For example, suppose $f_{n}:(0, \infty) \rightarrow \mathbb{R}$ is defined by

$$
f_{n}(x)=\frac{n x}{1+n x^{2}} \quad \text { then } \quad \lim _{n \rightarrow \infty} f_{n}(x)=\frac{1}{x}
$$

and

$$
\left|f_{n}(x)-f(x)\right|=\left|\frac{n x}{1+n x^{2}}-\frac{1}{x}\right|=\frac{1}{x+n x^{3}}
$$

For any given $\epsilon>0$ and for any n, the rightmost quantity can be made greater than ϵ by choosing x sufficiently close to zero:

$$
\epsilon \leq \frac{1}{x+n x^{3}}<\frac{1}{n x^{3}} \quad \Leftrightarrow \quad x<\frac{1}{\sqrt[3]{n \epsilon}}
$$

Hint 3. Note that

$$
\lim _{n \rightarrow \infty} x^{n}=\left\{\begin{array}{lll}
0 & \text { if } & 0 \leq x<1 \\
1 & \text { if } & x=1 \\
\infty & \text { if } & x>1
\end{array}\right.
$$

Hint 4. By setting the derivative equal to zero and solving for x, the maximum absolute value assumed by

$$
\left|f_{n}(x)\right|=\left|\frac{x}{1+n x^{2}}\right| \quad \text { is } \quad \frac{1}{2 \sqrt{n}}
$$

so

$$
-\frac{1}{2 \sqrt{n}}<f_{n}(x)<\frac{1}{2 \sqrt{n}}
$$

Hint 5. Note that if

$$
f_{n}(x)=\left\{\begin{array}{lll}
1 & \text { if } \quad x \leq-1 / n \\
-n x & \text { if } \quad-1 / n<x \leq 0 \\
n x & \text { if } \quad 0<x<1 / n \\
1 & \text { if } \quad x \geq 1 / n
\end{array}\right.
$$

then as $n \rightarrow \infty$, the interval $(-1 / n, 1 / n)$ tends to zero.

Hint 6. Given $f_{n}: A \rightarrow \mathbb{R}$, consider

$$
\lim _{n \rightarrow \infty} f_{n}(x)
$$

as a candidate for the limit function.

Hint 7. To establish the uniform continuity of a the limit function f of a sequence of functions $f_{n}: A \rightarrow \mathbb{R}$ that converges uniformly, consider the identity

$$
|f(x)-f(y)|=\left|f(x)-f_{N}(x)+f_{N}(x)-f_{N}(y)+f_{N}(y)-f(y)\right|
$$

as a starting point for an " $\epsilon / 3$ " proof. as a candidate for the limit function.

Hint 8. If g is a continuous function defined on a compact set K that is never zero, then

$$
\frac{1}{g} \text { is bounded on } K
$$

Hint 9. If $f_{n}(x)=f(x+1 / n)$ and the limit function f is uniformly continuous, consider the implications of the definition of uniform continuity, namely for every $\epsilon>0$ there exists a $\delta>0$ such that

$$
|f(y)-f(x)|=|f(x+1 / n)-f(x)|<\epsilon \quad \text { whenever } \quad\left|x+\frac{1}{n}-x\right|<\delta
$$

Also consider what happens if f is not uniformly continuous, for example, x^{2}.

Hint 10. With regard to whether the product $\left(f_{n} g_{n}\right)$ converges uniformly or not, consider the case where one of the limit functions is unbounded and the case where both are bounded.

Hint 11. If $f_{n} \rightarrow f$ pointwise on a compact set K and for $\epsilon>0$, if

$$
K_{n}=\left\{x \in K: g_{n}(x) \geq \epsilon\right\} \quad \text { where } \quad g_{n}=f_{n}-f
$$

you can argue that the K_{n} are closed and bounded to show compactness.

Hint 12. In the construction of the Cantor Function, note that when $m<n$,

$$
\left|f_{n}(x)-f_{m}(x)\right| \leq \frac{1}{2^{m}}
$$

Theorem 6.2.6 applies, as well as Exercise 6.2.8e. What values are assigned to 0 and 1 by each f_{n} ?

Hint 13. If $A=\left\{x_{1}, x_{2}, \ldots\right\}$ is a countable set and f_{n} a bounded function on A, the sequence

$$
\left(f_{n}\left(x_{1}\right)\right)=\left(f_{1}\left(x_{1}\right), f_{2}\left(x_{1}\right), \ldots\right)
$$

is a bounded sequence of real numbers, and the Bolzano-Weirstrass Theorem implies that there is a convergent subsequence (using the author's notation)

$$
\left(f_{n_{k}}\left(x_{1}\right)\right)=f_{1, k}\left(x_{1}\right)=\left(f_{1,1}\left(x_{1}\right), f_{1,2}\left(x_{1}\right), f_{1,3}\left(x_{1}\right), \ldots\right)
$$

Now consider that, if we apply each function in the sequence to x_{2} instead of x_{1}, the result is also a bounded sequence

$$
\left(f_{1, k}\left(x_{2}\right)\right)=\left(f_{1,1}\left(x_{2}\right), f_{1,2}\left(x_{2}\right), f_{1,3}\left(x_{2}\right), \ldots\right)
$$

which will contain a convergent subsequence

$$
\left(f_{2, k}\left(x_{2}\right)\right)=\left(f_{2,1}\left(x_{2}\right), f_{2,2}\left(x_{2}\right), f_{2,3}\left(x_{2}\right), \ldots\right)
$$

and this process can be continued by substituting x_{3} for x_{2} in this subsequence, obtaining another convergent subsequence, substituting x_{4} for x_{3} in it, and so on, until we have constructed a family of subsequences $f_{m, k}$.

Now consider the properties of the sequence

$$
f_{n, k}=\left(f_{1,1}, f_{2,2}, f_{3,3}, \ldots\right)
$$

for any $x \in A$.
Hint 14. Keep in mind that a sequence of functions that is continuous on $[0,1]$, or any other compact set, is uniformly continuous on that set.

Hint 15. For the Arzela-Ascoli theorem, consider

$$
\left|g_{x}(x)-g_{t}(x)\right|=\left|g_{s}(x)-g_{s}\left(r_{i}\right)+g_{s}\left(r_{i}\right)-g_{t}\left(r_{i}\right)+g_{t}\left(r_{i}\right)-g_{t}(x)\right|
$$

and apply the triangle inequality (in a somewhat more general form) to produce an " $\epsilon / 3 "$ argument.

