Gene Quinn

We will assume at first that the population standard deviation σ is known.

The procedure when σ is unknown is very similar and a separate procedure will be provided for that situation.

Suppose that:

• We know or can assume that we know the value of the population standard deviation σ .

- We know or can assume that we know the value of the population standard deviation σ .
- \checkmark We have a random sample of size n from the population

- We know or can assume that we know the value of the population standard deviation σ .
- \checkmark We have a random sample of size n from the population
- We know the sample mean \overline{x}

- We know or can assume that we know the value of the population standard deviation σ .
- We have a random sample of size n from the population
- We know the sample mean \overline{x}
- We know that if the null hypothesis H_0 is true, the population mean is μ_0 .

- We know or can assume that we know the value of the population standard deviation σ .
- \checkmark We have a random sample of size n from the population
- We know the sample mean \overline{x}
- We know that if the null hypothesis H_0 is true, the population mean is μ_0 .
- \checkmark We have chosen a value α for the level of significance

- We know or can assume that we know the value of the population standard deviation σ .
- \checkmark We have a random sample of size n from the population
- We know the sample mean \overline{x}
- We know that if the null hypothesis H_0 is true, the population mean is μ_0 .
- \checkmark We have chosen a value α for the level of significance
- We are interested in a Two-Tailed test: The alternative hypothesis H_1 states that $\mu \neq \mu_0$, the population mean μ does not equal μ_0 .

The steps in the confidence interval method are:

• Assume that the null hypothesis H_0 is true: The population mean is μ_0 .

The steps in the confidence interval method are:

- Assume that the null hypothesis H_0 is true: The population mean is μ_0 .
- Construct a $(1 \alpha) \cdot 100\%$ confidence interval centered at μ_0

The steps in the confidence interval method are:

- Assume that the null hypothesis H_0 is true: The population mean is μ_0 .
- Construct a $(1 \alpha) \cdot 100\%$ confidence interval centered at μ_0
- If the sample mean \overline{x} lies within the confidence interval, accept H_0 .

The steps in the confidence interval method are:

- Assume that the null hypothesis H_0 is true: The population mean is μ_0 .
- Construct a $(1 \alpha) \cdot 100\%$ confidence interval centered at μ_0
- If the sample mean \overline{x} lies within the confidence interval, accept H_0 .
- Otherwise, reject H_0 in favor of H_1 .

Step 1: Construct a $(1 - \alpha) \cdot 100\%$ confidence interval centered at μ_0 .

Step 1: Construct a $(1 - \alpha) \cdot 100\%$ confidence interval centered at μ_0 .

First we calculate the value $Z_{\alpha/2}$. This is the Z value for which

$$P(\mu_0 - Z_{\alpha/2} < z < \mu_0 + Z_{\alpha/2}) = 1 - \alpha$$

Step 1: Construct a $(1 - \alpha) \cdot 100\%$ confidence interval centered at μ_0 .

First we calculate the value $Z_{\alpha/2}$. This is the Z value for which

$$P(\mu_0 - Z_{\alpha/2} < z < \mu_0 + Z_{\alpha/2}) = 1 - \alpha$$

 $Z_{\alpha/2}$ can be obtained from the standard normal distribution table, or from a spreadsheet using the formula

$$= NORMSINV(1 - \alpha/2)$$

(in the actual formula, $-\alpha/2$ would be replaced by a value or a cell reference).

The upper limit of the confidence interval is:

$$U = \mu_0 + Z_{\alpha/2})$$

The upper limit of the confidence interval is:

$$U = \mu_0 + Z_{\alpha/2})$$

The lower limit of the confidence interval is:

$$L = \mu_0 - Z_{\alpha/2})$$

Step 2: Calculate the *Z*-score for the sample mean \overline{x} .

Step 2: Calculate the *Z*-score for the sample mean \overline{x} . The *Z* score for the sample mean \overline{x} is:

$$Z = \frac{\overline{x} - \mu_0}{\sigma/\sqrt{n}}$$

Step 3: Determine whether the Z score lies within the confidence interval.

Step 3: Determine whether the Z score lies within the confidence interval.

If the Z score lies within the confidence interval, that is,

 $L \le Z \le U$

then accept H_0 : $\mu = \mu_0$

Step 3: Determine whether the Z score lies within the confidence interval.

If the Z score lies within the confidence interval, that is,

$$L \le Z \le U$$

then accept H_0 : $\mu = \mu_0$

If the Z score lies **outside** the confidence interval, that is,

$$L > Z$$
 or $U < Z$

then reject H_0 in favor of $H_1: \mu \neq \mu_0$.