The Normal Curve

Gene Quinn

The Normal Curve

The Normal or bell curve is centered at 0 , and extends to infinity in both directions.

The Normal Curve

The Normal or bell curve is centered at 0 , and extends to infinity in both directions.

The total area under the bell curve is 1 .

The Normal Curve

The curve is symmetric about 0 ,

so the area to the left of zero under the bell curve is 0.5 .

The Normal Curve

Often we are interested in the area above some interval centered at zero,

The Normal Curve

Often we are interested in the area above some interval centered at zero,

Unfortunately there is no simple formula for calculating this.

The Normal Curve

Because there is no simple formula, a table is often used.

The Normal Curve

Because there is no simple formula, a table is often used.

z	Area
0.00	0.00
0.50	38.29
1.00	68.27
1.50	86.64
2.00	95.45
2.50	98.76
3.00	99.73

The Normal Curve

Because there is no simple formula, a table is often used.

z	Area
0.00	0.00
0.50	38.29
1.00	68.27
1.50	86.64
2.00	95.45
2.50	98.76
3.00	99.73

In this table, the Areas are in percentages.

The Normal Curve

Each row in the table has two entries.

The Normal Curve

Each row in the table has two entries.
The first entry is the distance above and below zero to include in the interval.

The Normal Curve

Each row in the table has two entries.
The first entry is the distance above and below zero to include in the interval.

If the first entry is 1.5 , the table gives the area under the curve from -1.5 to 1.5 .

The Normal Curve

Each row in the table has two entries.
The first entry is the distance above and below zero to include in the interval.

If the first entry is 1.5 , the table gives the area under the curve from -1.5 to 1.5 .

The second entry gives the percentage of the total area that is over this interval - 86.64 in this case.

The Normal Curve

This table can be used to find the area under the bell curve from $-z$ to z for some number z.

The Normal Curve

This table can be used to find the area under the bell curve from $-z$ to z for some number z.

Sometimes, we are interested in the percentage of a normal population below a certain value:

The Normal Curve

We cannot directly use the table to find an area of this form.

The Normal Curve

However, because the bell curve is symmetric, we can use the table indirectly.

The Normal Curve

However, because the bell curve is symmetric, we can use the table indirectly.

Suppose we want to find the area under the bell curve to the left of 1.5 .

From the table, we know that 86.64% of the area is between -1.5 and 1.5 .

The Normal Curve

However, because the bell curve is symmetric, we can use the table indirectly.
Suppose we want to find the area under the bell curve to the left of 1.5 .

From the table, we know that 86.64% of the area is between -1.5 and 1.5.

This means that 13.3% is outside the interval $[-1.5,1.5]$.

The Normal Curve

However, because the bell curve is symmetric, we can use the table indirectly.

Suppose we want to find the area under the bell curve to the left of 1.5 .

From the table, we know that 86.64% of the area is between -1.5 and 1.5.

This means that 13.3% is outside the interval $[-1.5,1.5]$.
The symmetry of the bell curve means that half of 13.3%, or 6.65% is above 1.5 .

The Normal Curve

However, because the bell curve is symmetric, we can use the table indirectly.

Suppose we want to find the area under the bell curve to the left of 1.5 .

From the table, we know that 86.64% of the area is between -1.5 and 1.5 .

This means that 13.3% is outside the interval $[-1.5,1.5]$.
The symmetry of the bell curve means that half of 13.3%, or 6.65% is above 1.5 .

So $100-6.65$ or 93.35% of the area is below 1.5.

The Normal Curve

Another area we can indirectly find from the table is:

The Normal Curve

Another area we can indirectly find from the table is:

We know the total area under the bell curve is 1 , and the table gives the unshaded area, so we can subtract the table

Using a Spreadsheet

Most spreadsheet programs have a function that computes the area under a bell curve.

Using a Spreadsheet

Most spreadsheet programs have a function that computes the area under a bell curve.

The function NORMSDIST gives the area under the bell curve of the standard normal distribution.

Using a Spreadsheet

Most spreadsheet programs have a function that computes the area under a bell curve.

The function NORMSDIST gives the area under the bell curve of the standard normal distribution.

The NORMSDIST takes a single argument which is interpreted as a position on the horizontal axis.

Using a Spreadsheet

Most spreadsheet programs have a function that computes the area under a bell curve.

The function NORMSDIST gives the area under the bell curve of the standard normal distribution.

The NORMSDIST takes a single argument which is interpreted as a position on the horizontal axis.

NORMSDIST returns the proportion of the area that lies to the left of the value given.

Using a Spreadsheet

Most spreadsheet programs have a function that computes the area under a bell curve.

The function NORMSDIST gives the area under the bell curve of the standard normal distribution.

The NORMSDIST takes a single argument which is interpreted as a position on the horizontal axis.

NORMSDIST returns the proportion of the area that lies to the left of the value given.

So, for example if we code =NORMSDIST(1.5) the result is 0.9332 .

NORMSDIST

Keep in mind the picture that goes with NORMSDIST:

NORMSDIST

Keep in mind the picture that goes with NORMSDIST:

With some ingenuity, most areas that are of interest can be calculated with NORMSDIST.

NORMSDIST

Also keep in mind that NORMSDIST is for the standard normal distribution

NORMSDIST

Also keep in mind that NORMSDIST is for the standard normal distribution

The standard normal distribution has mean 0 and standard deviation 1.

NORMDIST

Usually real data that has a normal or bell curve distribution does not have mean zero and standard deviation one.

Usually real data that has a normal or bell curve distribution does not have mean zero and standard deviation one. In this case a different function usually called NORMDIST must be used.

NORMDIST

Usually real data that has a normal or bell curve distribution does not have mean zero and standard deviation one. In this case a different function usually called NORMDIST must be used.
In addition to the proportion of the population, NORMDIST requires that we supply the mean and standard deviation of the bell curve.

Usually real data that has a normal or bell curve distribution does not have mean zero and standard deviation one. In this case a different function usually called NORMDIST must be used.
In addition to the proportion of the population, NORMDIST requires that we supply the mean and standard deviation of the bell curve.
If the mean is u and the standard deviation is s, syntax of the NORMDIST function is:

=NORMDIST(value,u,s,true)

Proportion Below a Given Value

The proportion of the area under a bell curve below a given value is:

=NORMDIST(value,u,s,true)

Proportion Below a Given Value

Example: Waist measurements of a certain population have bell curve distribution with mean 34.2 and standard deviation 2.1.

What proportion of this population has a waist measurement of 36 or less?

Proportion Below a Given Value

Example: Waist measurements of a certain population have bell curve distribution with mean 34.2 and standard deviation 2.1.

What proportion of this population has a waist measurement of 36 or less?
In this case the syntax for the formula is:
=NORMDIST(36,34.2,2.1,true)

Proportion Below a Given Value

Example: Waist measurements of a certain population have bell curve distribution with mean 34.2 and standard deviation 2.1.

What proportion of this population has a waist measurement of 36 or less?
In this case the syntax for the formula is:
=NORMDIST(36,34.2,2.1,true)
In this case, the result is 0.71

Proportion Below a Given Value

Example: Waist measurements of a certain population have bell curve distribution with mean 34.2 and standard deviation 2.1.

What proportion of this population has a waist measurement of 36 or less?
In this case the syntax for the formula is:
=NORMDIST(36,34.2,2.1,true)
In this case, the result is 0.71
This tells us that in a bell curve population with mean 34.2 and standard deviation 2.1, 71 percent of the population has a measurement of 36 or less.

Proportion Above a Given Value

The proportion of the area under a bell curve above a given value is:

=1-NORMDIST(value,u,s,true)

Proportion Below a Given Value

Example: Waist measurements of a certain population have bell curve distribution with mean 34.2 and standard deviation 2.1.

What proportion of this population has a waist measurement of 36 or greater?

Proportion Below a Given Value

Example: Waist measurements of a certain population have bell curve distribution with mean 34.2 and standard deviation 2.1.

What proportion of this population has a waist measurement of 36 or greater?
In this case the syntax for the formula is:
=1-NORMDIST(36,34.2,2.1,true)

Proportion Below a Given Value

Example: Waist measurements of a certain population have bell curve distribution with mean 34.2 and standard deviation 2.1.

What proportion of this population has a waist measurement of 36 or greater?
In this case the syntax for the formula is:
=1-NORMDIST(36,34.2,2.1,true)
In this case, the result is 0.29

Proportion Below a Given Value

Example: Waist measurements of a certain population have bell curve distribution with mean 34.2 and standard deviation 2.1.

What proportion of this population has a waist measurement of 36 or greater?
In this case the syntax for the formula is:
=1-NORMDIST(36,34.2,2.1,true)
In this case, the result is 0.29
This tells us that in a bell curve population with mean 34.2 and standard deviation 2.1, 29 percent of the population has a measurement of 36 or more.

Proportion Between Two Values

The proportion of the area under a bell curve between two given values \mathbf{a} and \mathbf{b} is:

NORMDIST(b,u,s,true)-NORMDIST(a,u,s,true)

Proportion Between Two Values

Example: Waist measurements of a certain population have bell curve distribution with mean 34.2 and standard deviation 2.1.

What proportion of this population has a waist measurement between 32 and 36 ?

Proportion Between Two Values

Example: Waist measurements of a certain population have bell curve distribution with mean 34.2 and standard deviation 2.1.

What proportion of this population has a waist measurement between 32 and 36 ?
In this case the syntax for the formula is:
=NORMDIST(36,34.2,2.1,true)NORMDIST(32,34.2,2.1,true)

Proportion Between Two Values

Example: Waist measurements of a certain population have bell curve distribution with mean 34.2 and standard deviation 2.1.

What proportion of this population has a waist measurement between 32 and 36 ?
In this case the syntax for the formula is:
=NORMDIST(36,34.2,2.1,true)NORMDIST(32,34.2,2.1,true)
In this case, the result is 0.57

Proportion Between Two Values

Example: Waist measurements of a certain population have bell curve distribution with mean 34.2 and standard deviation 2.1.

What proportion of this population has a waist measurement between 32 and 36 ?
In this case the syntax for the formula is:
=NORMDIST(36,34.2,2.1,true)NORMDIST(32,34.2,2.1,true)
In this case, the result is 0.57
This tells us that in a bell curve population with mean 34.2 and standard deviation 2.1, 57 percent of the population has a measurement between 32 and 36 .

Proportion Outside an Interval

The proportion of the area under a bell curve below a given value \mathbf{a} or above a second value \mathbf{b} is:

1-(NORMDIST(b,u,s,true)-NORMDIST(a,u,s,true))

Proportion Outside an Interval

Example: Waist measurements of a certain population have bell curve distribution with mean 34.2 and standard deviation 2.1.

What proportion of this population has a waist measurement below 32 or above 36 ?

Proportion Outside an Interval

Example: Waist measurements of a certain population have bell curve distribution with mean 34.2 and standard deviation 2.1.

What proportion of this population has a waist measurement below 32 or above 36 ?
In this case the syntax for the formula is:
=1-(NORMDIST(36,34.2,2.1,true)-
NORMDIST(32,34.2,2.1,true))

Proportion Outside an Interval

Example: Waist measurements of a certain population have bell curve distribution with mean 34.2 and standard deviation 2.1.

What proportion of this population has a waist measurement below 32 or above 36 ?
In this case the syntax for the formula is:
=1-(NORMDIST(36,34.2,2.1,true)NORMDIST(32,34.2,2.1,true))
In this case, the result is 0.43

Proportion Outside an Interval

Example: Waist measurements of a certain population have bell curve distribution with mean 34.2 and standard deviation 2.1.

What proportion of this population has a waist measurement below 32 or above 36 ?
In this case the syntax for the formula is:
=1-(NORMDIST(36,34.2,2.1,true)-
NORMDIST(32,34.2,2.1,true))
In this case, the result is 0.43
This tells us that in a bell curve population with mean 34.2 and standard deviation 2.1, 57 percent of the population has a measurement between 32 and 36 .

Example

Assuming scores on an IQ test are distributed as a bell curve with mean 100 and standard deviation 15.

What proportion of the population would have scores below 97?

- A) 0.58
- B) 0.49
- C) 0.38
- D) 0.42

Example

Assuming scores on an IQ test are distributed as a bell curve with mean 100 and standard deviation 15.

What proportion of the population would have scores below 97?

Answer: D (.42)
=NORMDIST(97,100,15,true)

Example

Assume weights in a population are distributed as a bell curve with mean 175 and standard deviation 30 .

What proportion of the population would weigh more than 200 ?

- A) 0.20
- B) 0.15
- C) 0.10
- D) 0.05

Example

Assume weights in a population are distributed as a bell curve with mean 175 and standard deviation 30.

What proportion of the population would weigh more than 200 ?

Answer: A (.20)
=1-NORMDIST(200,175,30,true)

Example

Assume systolic blood pressure follows a bell curve distribution with a mean of 120 and a standard deviation of 40.

What proportion of the population would have systolic pressure between 100 and 140 ?

- A) 0.45
- B) 0.32
- C) 0.38
- D) 0.28

Example

Assume systolic blood pressure follows a bell curve distribution with a mean of 120 and a standard deviation of 40.

What proportion of the population would have systolic pressure between 100 and 140 ?
Answer: C (0.38)
=NORMDIST(140,120,40,true)NORMDIST(100,120,40,true)

