
This material is background for transformations of random variables.

1. Definitions

1.1. Functions. A function

f : X → Y

is a mapping that associates with each element of a set X a unique

element of another set Y .

Recall that the Cartesian product X × Y of two sets X and Y is
defined as:

X × Y = {(x, y) : x ∈ X and y ∈ Y }

One can define a function f : X → Y in a very general and abstract
way as a subset of X × Y with the restriction that each element of X

appears in exactly one ordered pair.

(This level of abstraction is not usually required, but it clarifies the
role of the set Y )

The set X is called the domain of f . Every element of the domain
must be associated with exactly one element of Y .

The set Y usually does not have a name, though some authors call
it the codomain.

The set of values in Y that f actually maps one or more elements of
X to is called the range of f , and in set builder notation the definition
of the range of f is:

{y ∈ Y : (∃x)[y = f(x)]}

It is not required that f map at least one element of X to every element
of Y , but if it does, f is said to be onto or surjective.

1.2. Images. It is useful to extend the concept of a function as a map-
ping to include subsets of the domain as well as individual elements.

If A ⊆ X is some subset of the domain, we define the image under
f of A to be the set of all elements y ∈ Y such that y = f(x) for some
x ∈ A, and denote it by f [A]:

f [A] = {y ∈ Y : (∃x)[x ∈ A and y = f(x)]}
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With this notation, the range of X is f [X]. The function f is onto if
and only if f [X] = Y .

A more important notion than the image under f of a subset of X is
the idea of an inverse image. If B ⊆ Y , we define the inverse image

f−1[B] of B to be the set of elements of X for which f(x) ∈ B:

f−1[B] = {x ∈ X : f(x) ∈ B}

The function f is onto (surjective) if and only if the inverse image
of every nonempty subset B of Y is nonempty.

The notation f−1[B] for the inverse image of B should not be con-
fused with the inverse function f−1. The (possibly empty) inverse
image always exists for any subset of B, but we assume nothing about
the existence of the function inverse f−1.

1.3. Function Inverses. Recall that a function f : X → Y is called
one-to-one (or injective or univalent) if for any distinct elements x1, x2 ∈
X,

f(x1) = f(x2) only if x1 = x2

A function that is both one-to-one and onto is called a one-to-one

correspondence (or bijection). In this case there exists a function g :
Y → X called the inverse of f with the property that

g(f(x)) = x ∀x ∈ X and f(g(y)) = y ∀y ∈ Y

When the inverse of f exists, it is usually denoted by f−1. The
notation for the inverse image of a subset of Y

f−1[A], A ⊆ Y

is actually ambiguous when g = f−1 exists, but it’s not problem be-
cause in this case, the image of A under f−1 and the inverse image of
A under f are the same.

1.4. Properties of Inverse Images. The inverse image is very well-
behaved with respect to the usual set operations of union, intersection,
and complimentation. For an arbitrary B ⊆ Y and arbitrary collections
{Bλ} of subsets of Y ,

f−1
[

⋃

Bλ

]

=
⋃

f−1 [Bλ]

f−1
[

⋂

Bλ

]

=
⋂

f−1 [Bλ]
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f−1 [∼ B] = ∼ f−1 [B] for B ⊂ Y

where ∼ B denotes the compliment of B with respect to Y .

1.5. Random Variabe Transformations. In the context of a ran-
dom variable transformation, the sets X and Y in the definition of the
transform function f : X → Y may be taken respectively to be the
support of some random variables X and Y , and we usually consider
maps that are onto, that is, f [X] = Y .

In this context the following general principle applies.

If f maps some random variable X into another random variable Y ,
for any subset B ⊆ Y , we require that

P (y ∈ B) = P (x ∈ f−1[B])

That is, for any subset B of the support of Y , the probability that an ob-

servation from the population represented by Y is an element of B must

be the same as the probability that an observation from the distribution

X belongs to the inverse image under f of B, namely f−1[B].

1.6. Some Examples. Usually we will be interested in subsets of Y

that are intervals. For example, suppose X is a normally distributed
random variable with mean µ = 0 and variance σ2 = 1, denoted by X ∼
N(0, 1). Suppose also that we are interested in the random variable
Y = X2.

While X can assume any real value, Y assumes only nonnegative
values. The map is not one-to-one, and a bit of thought should convince
you that, for B ⊆ Y of the form [0, y],

f−1[B] = f−1 [[0, y]] = [−√
y,
√

y]

The CDF of Y , FY (y) is the probability that an observation falls in
[0, y]. This should be the same as the probability that an observation
of X falls in

f−1 [[0, y]] = [−√
y,
√

y]

so

FY (y) =

∫

√
y

−
√

y

1√
2π

e−
x
2

2 dx

To obtain the PDF fY (y), we can differentiate the CDF with respect
to y. Recall from the fundamental theorem of calculus that

d

dy

∫ u(y)

a

f(x) dx = f(u(y)) · du(y)

dy
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so

fY (y) =
d

dy
FY (y) =

d

dy

(

∫

√
y

−
√

y

1√
2π

e−
x
2

2 dx

)

First break up the doubly improper integral into two parts:

fY (y) =
d

dy

(

∫ 0

−
√

y

1√
2π

e−
x
2

2 dx +

∫

√
y

0

1√
2π

e−
x
2

2 dx

)

Applying the fundamental theorem of calculus we get:

fY (y) = − 1√
2π

e−
(−

√
y)2

2 · −1

2
√

y
+

1√
2π

e−
√

y
2

2 · 1

2
√

y

Collecting the exponential terms gives:

fY (y) =
1√

2π
√

y
e

−y

2

The random variable Y has the chi-square distribution (with 1 degree
of freedom). You can verify with maple that

∫ ∞

0

1√
2π

√
y
e−

y

2 = 1

Example 2 Here is a more extreme example. Suppose as before X ∼
N(0, 1), but this time we are interested in the random variable Y =
cos X. In this case the transform g(x) = cos x maps R → [−1, 1] and
the inverse image of [−1, y] consists of an infinite number of intervals,
centered at the points xn on the x-axis with cos x = −1,

xn = (2n − 1)π, n ∈ {. . . ,−2,−1, 0, 1, 2, . . .}
Each interval has width 2(π− cos−1 y), so the inverse image under f of
[−1, y] is the union of the intervals,

g−1[−1, y] =
⋃

n∈Z

[(2n − 2)π + cos−1 y, 2nπ − cos−1 y]

Example 3 Suppose X ∼ N(0, 1) as before, but this time we are
interested in the random variable

Y = eX

The transform function g(x) = ex is one-to-one, and its inverse is
g−1(y) = ln y. The density function approach can be used, so the
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pdf of Y is

h(y) = f
[

g−1(y)
]

∣

∣

∣

∣

d

dy
g−1(y)

∣

∣

∣

∣

= f(ln y)
1

y

h(y) =
1√
2πy

e−
(ln y)2

2

In this case Y is said to have a lognormal distribution.

We can use the CDF approach with this transform. Note that g :
R → (0,∞). Because the transform is one-to-one, it has an inverse,
and consequently the inverse image of an interval is another interval,
which might get stretched or compressed but will remain in one piece.
We can discover what this interval is by evaluating g−1 at each of the
endpoints of the Y interval, 0 and y.

For the CDF of Y , FY (y), we are interested in intervals of the form
(0, y]. We can find the inverse image under the invertible function g

of this interval by finding its image under g−1. Since g−1(y) = ln y),
we can just take the natural logs of the endpoints (treating the lower
endpoint as a limit of finite positive numbers). The inverse image of
(0, y) is (−∞, ln y), and so

FY (y) =

∫ ln y

−∞

1√
2π

e−
x
2

2

again applying the fundamental theorem of calculus,

fY (y) =
d

dy
FY (y) =

1√
2π

e−
(ln y)2

2 · 1

y

fY (y) =
1√
2πy

e−
(ln y)2

2

which is the same result we obtained with the density function ap-
proach.


