AVERBACH AND MEHTA 3.6 EXERCISES - \#8

8) If $\operatorname{Var}\left(X_{1}\right)=\operatorname{Var}\left(X_{2}\right)=1$ and $\rho\left(X_{1}, X_{2}\right)=2 / 3$, find the value of k for which

$$
\rho\left(X_{1}, X_{1}+k X_{2}\right)=\frac{2}{3}
$$

a) $-3 / 4$
b) $-2 / 3$
c) $2 / 3$
d) $3 / 4$
e) 1

Solution: Since the variances of X_{1} and X_{2} are both $1, \operatorname{Cov}\left(X_{1}, X_{2}\right)=$ $\rho\left(X_{1}, X_{2}\right)$, and the variance-covariance matrix of $\left[X_{1}, X_{2}\right]$ is

$$
V=\left[\begin{array}{cc}
1 & 2 / 3 \\
2 / 3 & 1
\end{array}\right]
$$

and the transform matrix is

$$
A=\left[\begin{array}{ll}
1 & 1 \\
0 & k
\end{array}\right]
$$

and the variance-covariance matrix of $\left(X_{1}, X_{1}+k X_{2}\right)$ is

$$
\begin{aligned}
A^{\prime} V A & =\left[\begin{array}{ll}
1 & 0 \\
1 & k
\end{array}\right]\left[\begin{array}{cc}
1 & 2 / 3 \\
2 / 3 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & k
\end{array}\right] \\
& =\left[\begin{array}{cc}
1 & \frac{2}{3} \\
1+\frac{2}{3} k & \frac{2}{3}+k
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
0 & k
\end{array}\right] \\
& =\left[\begin{array}{cc}
1 & 1+\frac{2}{3} k \\
1+\frac{2}{3} k & 1+\frac{4}{3} k+k^{2}
\end{array}\right]
\end{aligned}
$$

So $\rho\left(X_{1}, k X_{1}+X_{2}\right)$ is

$$
\rho\left(X_{1}, k X_{1}+X_{2}\right)=\frac{2}{3}=\frac{1+\frac{2}{3}}{\sqrt{1} \sqrt{1+\frac{4}{3}+k^{2}}}
$$

so

$$
\left(1+\frac{2}{3} k\right)^{2}=\frac{4}{9}\left(1+\frac{4}{3} k+k^{2}\right)
$$

and therefore

$$
1+\frac{4}{3} k+\frac{4}{9} k^{2}=\frac{4}{9}+\frac{16}{27} k+\frac{4}{9} k^{2}
$$

and

$$
\frac{15}{27}+\frac{36}{27} k-\frac{16}{27} k=0
$$

so

$$
15+20 k=0 \quad \text { and } \quad k=-\frac{15}{20}=-\frac{3}{4}
$$

