3.6 Exercises Problem 4

Gene Quinn
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Which of the following is the mgf of a random variable with
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By definition the mgf is

M,(t) = E(ef*) = Zewf(
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By definition the mgf is

M,(t) = E(e") = iem <€;1> — (el)ie@l)x

= (e—1) [(et_l) + (et_l)2 + (et_l)3 + - }

= (e—1)(e™) {1 + (et_l) + (et_l)2 + (et_l)3 N }

Note that the series inside the square brackets is a
geometric series, and for values of ¢t near zero, the ratio of

successive terms ¢!~ 1 is less than 1.
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As a result, the infinite series converges and its sum is
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As a result, the infinite series converges and its sum is
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In this case, r = ¢! and so the sum is
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So we can rewrite the expression

= (e—1)(e") {1 + (et_l) + (et_l)2 + (et_l)3 4. }

as
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