AVERBACH AND MEHTA 3.6 EXERCISES - \#34

34) If $\mathrm{E}(X)=4, \operatorname{Var}(X)=2, \mathrm{E}(Y)=3, \operatorname{Var}(Y)=18$, and $\rho(X, Y)=$ $1 / 2$, then $\operatorname{Cov}(X+2, X+2 Y)$ is:
a) 9
b) 12
c) 8
d) 4
e) 6

Solution: The variance-covariance matrix of $[X, Y]$ is

$$
\left[\begin{array}{cc}
\operatorname{Var}(X) & \operatorname{Cov}(X, Y) \\
\operatorname{Cov}(X, Y) & \operatorname{Var}(Y)
\end{array}\right]
$$

From the given information,
$\operatorname{Cov}(X, Y)=\rho(X, Y) \sqrt{\operatorname{Var}(X)} \sqrt{\operatorname{Var}(Y)}=\frac{1}{2} \sqrt{2} \sqrt{18}=\frac{1}{2} \sqrt{36}=3$
so the variance-covariance matrix of $[X, Y]$ is

$$
V=\left[\begin{array}{cc}
2 & 3 \\
3 & 18
\end{array}\right]
$$

The transformation matrix is

$$
A=\left[\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right]
$$

so that

$$
A^{\prime}\left[\begin{array}{l}
X \\
Y
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
X \\
Y
\end{array}\right]=\left[\begin{array}{c}
X \\
X+2 Y
\end{array}\right]
$$

and the variance-covariance matrix of the transformed variables $[X, X+$ $2 Y]$ is

$$
\begin{aligned}
& A^{\prime} V A=\left[\begin{array}{ll}
1 & 0 \\
1 & 2
\end{array}\right]\left[\begin{array}{cc}
2 & 3 \\
3 & 18
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right] \\
& =\left[\begin{array}{cc}
2 & 3 \\
8 & 39
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right]=\left[\begin{array}{cc}
2 & 8 \\
8 & 86
\end{array}\right]
\end{aligned}
$$

Adding a constant to a random variable does not change its variance or covariance, so

$$
\operatorname{Cov}(X+2, X+2 Y)=\operatorname{Cov}(X, X+2 Y)=8
$$

