AVERBACH AND MEHTA 3.6 EXERCISES - \#17

17) Let X and Y be r.v.'s with $\operatorname{Var}(X)=4, \operatorname{Var}(Y)=9$, and $\operatorname{Var}(X-$ $Y)=16$. What is $\operatorname{Cov}(X, Y)$?
a) $-3 / 2$
b) $-1 / 2$
c) $1 / 2$
d) $3 / 2$
e) $13 / 16$

Solution: If $\operatorname{Cov}(X, Y)=\sigma_{X Y}$ the variance-covariance matrix of $[X, Y]$ is

$$
V=\left[\begin{array}{cc}
4 & \sigma_{X Y} \\
\sigma_{X Y} & 9
\end{array}\right]
$$

and the transform vector is

$$
a=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

and the variance of $(X-Y)$ is

$$
\begin{gathered}
a^{\prime} V a=\left[\begin{array}{ll}
1 & -1
\end{array}\right]\left[\begin{array}{cc}
4 & \sigma_{X Y} \\
\sigma_{X Y} & 9
\end{array}\right]\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \\
=\left[\begin{array}{ll}
4-\sigma_{X Y} & \sigma_{X Y}-9
\end{array}\right]\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \\
{\left[13-2 \sigma_{X Y}\right]=16} \\
-2 \sigma_{X Y}=3 \quad \text { so } \quad \sigma_{X Y}=-\frac{3}{2}
\end{gathered}
$$

