AVERBACH AND MEHTA 3.6 EXERCISES - \#13

13) Let X and Y be continuous r.v.'s with the same pdf and let $Z=$ $k X-Y$. If $\rho(X, Z)=1 / 3$, what is the value of k ?
a) $1 / \sqrt{2}$
b) $1 / 3$
c) $1 / 2$
d) $1 / \sqrt{2}$
e) $1 / \sqrt{3}$

Solution: The variance-covariance matrix of $[X, Y]$ is

$$
\left[\begin{array}{cc}
\sigma^{2} & 0 \\
0 & \sigma^{2}
\end{array}\right]
$$

and the transform matrix is

$$
A=\left[\begin{array}{cc}
1 & k \\
0 & -1
\end{array}\right]
$$

and the variance-covariance matrix is

$$
\begin{aligned}
A^{\prime} V A & =\left[\begin{array}{cc}
1 & 0 \\
k & -1
\end{array}\right]\left[\begin{array}{cc}
\sigma^{2} & 0 \\
0 & \sigma^{2}
\end{array}\right]\left[\begin{array}{cc}
1 & k \\
0 & -1
\end{array}\right] \\
& =\left[\begin{array}{cc}
\sigma^{2} & 0 \\
k \sigma^{2} & -\sigma^{2}
\end{array}\right]\left[\begin{array}{cc}
1 & k \\
0 & -1
\end{array}\right] \\
& =\left[\begin{array}{cc}
\sigma^{2} & k \sigma^{2} \\
k \sigma^{2} & k^{2} \sigma^{2}+\sigma^{2}
\end{array}\right]
\end{aligned}
$$

$\rho(X, Z)$ is given by

$$
\rho(X, Z)=\frac{1}{3}=\frac{k \sigma^{2}}{\sqrt{\sigma^{2}} \sqrt{\left(k^{2}+1\right) \sigma^{2}}}=\frac{k}{\sqrt{k^{2}+1}}
$$

so

$$
\frac{1}{3}=\frac{k}{\sqrt{k^{2}+1}}
$$

and therefore

$$
k^{2}+1=9 k^{2} \quad \text { so } \quad k=\frac{1}{\sqrt{8}}=\frac{1}{2 \sqrt{2}}
$$

