SECANT LINES

1. Secant Lines

By a secant line, we mean a straight line connecting two different points on a curve.

There are two points of intersection between the line and the function graph, which we will label

$$
(x, f(x)) \quad \text { and } \quad(x+h, f(x+h))
$$

for some positive value h.

Then we can label the graph as follows:

The slope of the secant line is:

$$
\text { slope }=\frac{\text { rise }}{\text { run }}=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h}
$$

Example 1.1. Find the slope of the secant line that intersects the graph of the function

$$
y=x^{2}
$$

at the points $(1,1)$ and $(2,4)$. Identifying the points of intersection with those in the graph, namely $(x, f(x))$ and $(x+h, f(x+h))$, we have

$$
(x, f(x))=(1,1) \quad \text { and } \quad(x+h, f(x+h))=(2,4)
$$

The slope of the secant line is then:

$$
\text { slope }=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{4-1}{2-1}=3
$$

Example 1.2. Find the slope of the secant line that intersects the graph of the function

$$
y=x^{2}
$$

at the points $(0,0)$ and $(2,4)$. Identifying the points of intersection with those in the graph, namely $(x, f(x))$ and $(x+h, f(x+h))$, we have

$$
(x, f(x))=(0,0) \quad \text { and } \quad(x+h, f(x+h))=(2,4)
$$

The slope of the secant line is then:

$$
\text { slope }=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{4-0}{2-0}=\frac{4}{2}=2
$$

Evidently, the slope of the secant line depends on the values of x and h. It would be helpful to have a general formula in terms of x and h.

If $f(x)=x^{2}$, then we can write

$$
\begin{aligned}
& \text { slope }=\frac{f(x+h)-f(x)}{(x+h)-x} \\
&=\frac{(x+h)^{2}-x^{2}}{x+h-x}=\frac{\left(x^{2}+2 x h+h^{2}\right)-x^{2}}{h}=\frac{2 x h+h^{2}}{h}
\end{aligned}
$$

So the slope of the secant line joining $(x, f(x))$ and $(x+h, f(x+h))$ has slope

$$
\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{2 x h+h^{2}}{h}=2 x+h
$$

Now we can redo our first example: Find the slope of the secant line to $f(x)=x^{2}$ between $(1,1)$ and $(2,4)$ Identifying $x=1$ and $h=1$, the slope of the secant line is $2 \cdot x+h=2+1=3$ In the second example, $x=0$ and $h=2$, so the slope of the secant line is $2 \cdot 0+2=2$.
1.1. Alternative Notation. An alternative notation for designating the secant line between $(x, f(x))$ and $(x+h, f(x+h))$ is

$$
(x, f(x)) \quad \text { and } \quad(a, f(a))
$$

Then the slope of the secant is

$$
\text { slope }=\frac{f(x)-f(a)}{x-a}
$$

Example 1.3. Find the slope of the secant line to the graph of the function $f(x)=\sqrt{x}$ from $x=0$ to $x=2$.

$$
\text { slope }=\frac{f(2)-f(0)}{2-0}=\frac{\sqrt{2}-\sqrt{0}}{2}=\frac{\sqrt{2}}{2}
$$

