POWER FUNCTIONS

1. Power Functions

1.1. Definition. A power function is a function of the form

$$
f: \mathbb{R} \rightarrow \mathbb{R} \quad \text { by } \quad y=f(x)=x^{a}
$$

where a is a real number.
We will confine our discussion to the case where a is rational, because that allows us to express x^{a} in terms of integer powers and roots.

We will also consider only positive values, postponing consideration of negative powers until the section on rational functions.

If $a>0$ is rational, it can be written as a quotient of two integers m and n,

$$
a=\frac{m}{n} \quad m, n \in \mathbb{Z}, \quad n \neq 0
$$

then, from our powers and roots section results, every power function with a positive rational exponent can be written as:

$$
x^{a}=x^{\frac{m}{n}}=\sqrt[n]{x^{m}}=(\sqrt[n]{x})^{m}
$$

1.2. Domain and Range. For any complex numbers z and u, the quantity

$$
z^{u}
$$

is perfectly well defined. The difficulties arise when we restrict ourselves to real-valued functions, for example, requiring

$$
y=\sqrt[n]{x}
$$

to be a real number. If $x \geq 0$, there are no problems, but if $x<0$, there may not be any real solutions to this equation.

It is useful in this situation to think of the radicand as

$$
\sqrt[n]{(-1) \cdot x}
$$

for some $x>0$. Then using the algebraic properties of powers and roots, we can write this as

$$
((-1) \cdot x)^{\frac{1}{n}}=(-1)^{\frac{1}{n}}(x)^{\frac{1}{n}}=\sqrt[n]{-1} \cdot \sqrt[n]{x}
$$

The problem now reduces to determining whether or not there is a real number u such that

$$
u=\sqrt[n]{-1}
$$

There are certainly complex numbers that make this equation true since any solution of the equation

$$
u^{n}+1=0
$$

qualifies as an $n^{\text {th }}$ root of -1 .
As it turns out, if n is odd, we can always factor $u^{n}+1$ into an expression of the form

$$
u^{n}+1=(u+1)\left(u^{n-1}-u^{n-2}+u^{n-3}-\cdots+1\right)
$$

which shows that, if n is odd, -1 is always an $n^{\text {th }}$ root of -1 .

Example 1.1. Find all solutions to the equation

$$
u^{3}+1=0
$$

First factor out $(u+1)$, which is possible since n is odd:

$$
u^{3}+1=(u+1)\left(u^{2}-u+1\right)
$$

Now apply the quadratic formula to the second factor,

$$
u=\frac{1 \pm \sqrt{1-4}}{2}=\frac{1}{2} \pm \frac{\sqrt{3}}{2} i
$$

so the solutions are

$$
-1, \quad \frac{1}{2}+\frac{\sqrt{3}}{2} i, \quad \frac{1}{2}-\frac{\sqrt{3}}{2} i
$$

All of these numbers produce -1 when cubed, but only -1 is a real number. So if we are restricted to real solutions, we would write

$$
\sqrt[3]{-1}=-1
$$

As it turns out, the solutions of $u^{n}+1=0$ depend on whether n is even or odd.

- If n is odd, -1 is the only real root. There are $n-1$ complex roots.
- If n is even, all of the roots are complex.

The properties of power functions are summarized in the following table for positive integers n :

1.3. Asymptotic Behavior. For any positive integer n,

- The values of x^{n} and $\sqrt[n]{x}$ tend to ∞ as x becomes large and positive.
- If n is odd, x^{n} and $\sqrt[n]{x}$ tend to $-\infty$ as x becomes large and negative
- If n is even, x^{n} tends to ∞ as x becomes large and negative
- x^{n} and $\sqrt[n]{x}$ have no vertical or horizontal asymototes
1.4. Important Characteristics. The graph of every power function passes through the origin $(0,0)$ and the point $(1,1)$.

If the domain includes negative real numbers and n is even, the graph passes through the point $(-1,1)$.

If the domain includes negative real numbers and n is odd, the graph passes through the point $(-1,-1)$.
1.4.1. Growth Rates. The following figure contains the graphs of the following power functions in the first quadrant:

$$
\sqrt[4]{x}, \sqrt[3]{x}, \sqrt{x}, x, x^{2}, x^{3}, x^{4}
$$

On the interval $(1, \infty), \sqrt[4]{x}$ has the smallest value and x^{4} has the largest, with the other power functions falling in between in order of increasing exponents.

$$
\sqrt[4]{x}<\sqrt[3]{x}<\sqrt{x}<x<x^{2}<x^{3}<x^{4}
$$

On the interval $(0,1)$, the order is reversed: the function with the smallest exponent has the largest value

$$
x^{4}<x^{3}<x^{2}<x<\sqrt{x}<\sqrt[3]{x}<\sqrt[4]{x}
$$

This result is actually a bit more general. For any positive real numbers a, b, n, m with $m<n$, as x increases eventually

$$
a x^{m}<b x^{n}
$$

no matter how much larger a is than b.
Example 1.2. As x becomes larger and larger, eventually

$$
10,000 \cdot x<\frac{x^{2}}{10,000}
$$

In this case, we need to take $x>10,000,000,000$

