POLYNOMIALS

1. Polynomials

1.1. Definition. A polynomial is a function of the form

$$
f: \mathbb{R} \rightarrow \mathbb{R} \quad \text { by } \quad P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

where $a_{0}, a_{1}, a_{2}, \ldots, a_{n}$ are real constants and n is a nonnegative integer.
n is called the degree of the polynomial.
The constants $a_{0}, a_{1}, \ldots, a_{n}$ are called the coefficients of the polynomial.

A polynomial is a sum of power functions with nonnegative integer exponents.

- a polynomial of degree $0 P(x)=a_{0}$ is a constant function
- a polynomial of degree $1 P(x)=a_{1} x+a_{0}$ is a linear function
- a polynomial of degree $2 P(x)=a_{2} x^{2}+a_{1} x+a_{0}$ is called a quadratic function
- a polynomial of degree $3 P(x)=a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$ is called a cubic function

Polynomials are among the most useful functions for mathematical modeling because they are relatively simple and can assume a great variety of shapes.

Example 1.1.

$$
P(x)=x^{3}-2 x^{2}+x-4
$$

is a third degree or cubic polynomial.

Example 1.2.

$$
P(x)=x^{4}
$$

is a fourth degree polynomial. In an $n^{\text {th }}$ degree polynomial, only a_{n} has to be nonzero.

1.2. Domain and Range. The domain of every polynomial is \mathbb{R}.

The range of every polonomial of odd degree is \mathbb{R}.
The range of a polynomial of even degree depends on the degree n and the sign of a_{n} :

- $\left\{a_{0}\right\}$ if $n=0(P(x)$ is a constant function $)$
- $\{x: x \geq k\}$ if $n>0$ and $a_{n}>0$
- $\{x: x \leq k\}$ if $n>0$ and $a_{n}<0$
where k is a real constant.

Example 1.3. The domain and range of the third degree polynomial

$$
P(x)=x^{3}-3 x^{2}+2-1
$$

are both \mathbb{R} because $n=3$ is odd.

Example 1.4. The domain of the fourth degree polynomial

$$
P(x)=x^{4}+x^{3}+x+2
$$

is \mathbb{R}. The range has the form $[k, \infty)$ where k is a constant that depends on the coefficients. For this polynomilal, the range is $[1, \infty)$.

Example 1.5. The domain of the second degree polynomial

$$
P(x)=-x^{2}+2
$$

is \mathbb{R}. The range has the form $(-\infty, k]$ where k is a constant that depends on the coefficients. For this polynomilal, the range is $(-\infty, 2]$.

1.3. Asymptotic Behavior. For any polynomial with $n>0$,

- The value of $P(x)$ always tends to either ∞ or $-\infty$ as x becomes large and positive.
- The value of $P(x)$ always tends to either ∞ or $-\infty$ as x becomes large and negative
- The graph of $P(x)$ has no vertical or horizontal asymptotes
1.4. Important Characteristics. $P(x)$ is defined and finite for any real value of x.

The value of $P(x)$

- Does not tend to ∞ for any finite value of x
- Always tends to $\pm \infty$ as x approaches $\pm \infty$

Two polynomials

$$
P_{1}(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

and

$$
P_{2}(x)=b_{n} x^{n}+b_{n-1} x^{n-1}+\cdots+b_{1} x+b_{0}
$$

are equal for all values of x if and only if their coefficients are the same:

$$
a_{n}=b_{n}, \quad a_{n-1}=b_{n-1}, \quad \ldots \quad a_{1}=b_{1}, \quad a_{0}=b_{0}
$$

Of course, this also implies that they are of the same degree.
Solutions of the equation

$$
P(x)=0
$$

are called the roots of the polynomial.
The following important result is known as the fundamental theorem of algebra:

If we allow complex solutions and count multiplicities, every polynomial of degree n has n roots.

Equivalently, we can say that every polynomial of degree n can be written as the product of n factors

$$
k \cdot\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right) \cdots\left(x-\lambda_{n}\right)
$$

and, possibly, a constant k where $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are the roots of $P(x)$.

Example 1.6. The roots of

$$
P(x)=x^{2}-2
$$

can be found using the quadratic formula:

$$
x=\frac{0 \pm \sqrt{0-4 \cdot(-2)}}{2}= \pm \frac{\sqrt{8}}{2}= \pm \sqrt{2}
$$

We can also think of factoring $P(x)$ into:

$$
P(x)=x^{2}-2=(x-\sqrt{2})(x+\sqrt{2})
$$

so the roots are $\lambda_{1}=\sqrt{2}$ and $\lambda_{2}=-\sqrt{x}$. The roots are the x coordinates of the points where the graph crosses the x-axis.

Example 1.7. The roots of

$$
P(x)=x^{2}+2 x+1
$$

can be found using the quadratic formula:

$$
x=\frac{-2 \pm \sqrt{4-4 \cdot 1 \cdot 1}}{2}=\frac{-2 \pm 0}{2}=-1
$$

We can factor $P(x)$ into:

$$
P(x)=x^{2}+2 x+1=(x+1)(x+1)
$$

$\lambda_{1}=-1$ is a root with multiplicity 2 (the multiplicity is the number of identical factors the root has).

Example 1.8. Find the roots of

$$
P(x)=x^{3}-x^{2}+2 x-2
$$

We do not have a formula analagous to the quadratic formula for cubics, but we can factor this polynomial into

$$
P(x)=x^{3}-x^{2}+2 x-2=(x-1)\left(x^{2}+2\right)
$$

This tells us that 1 is a root, and we can use the quadratic formula for the second factor,

$$
x=\frac{0 \pm \sqrt{0-4 \cdot 2}}{2}=\frac{ \pm \sqrt{-8}}{2}= \pm \frac{\sqrt{-8}}{\sqrt{4}}= \pm 2 i
$$

We can factor $P(x)$ fully into:

$$
P(x)=x^{3}-x^{2}+2 x-2=(x-1)(x-2 i)(x+2 i)
$$

so the roots are $\lambda_{1}=1, \lambda_{2}=-2 i$, and $\lambda_{3}=2 i$.
This polynomial has one real root and two complex roots. If a polynomial has complex roots, they always occur in conjugate pairs.

The graph of this polynomial crosses the x-axis only once, at $x=1$, because there is one real root.

Example 1.9. Find a polynomial that has roots $-1,1$, and 2.
In this case, we write down the factors that produce these roots, and expand the product:
$P(x)=(x+1)(x-1)(x-2)=\left(x^{2}-1\right)(x-2)=x^{3}-2 x^{2}-x+2$

