1. EXPECTED VALUES AND STANDARD ERRORS OF COMMON POINT ESTIMATORS

2. Small-sample normal population confidence interval summary

parameter	confidence interval	Notes
μ	$\overline{Y}\pm t_{lpha/2, u}$	$\nu = $ degrees of freedom $= n - 1$
$\mu_1 - \mu_2$	$\overline{Y}_1 - \overline{Y}_2 \pm t_{\alpha/2,\nu} S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$	$\nu = n_1 + n_2 - 2$

note:
$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 + 1}$$

3. Confidence interval for σ^2

$$\left(\frac{(n-1)S^2}{\chi^2_{\alpha/2,n-1}},\frac{(n-1)S^2}{\chi^2_{1-\alpha/2,n-1}}\right)$$

4. FISHER INFORMATION, LARGE SAMPLE DISTRIBUTION OF MAXIMUM LIKELIHOOD STATISTICS

If Y_1, \ldots, Y_n is a random sample from a distribution with density f(y) depending on parameter θ , the Fisher information $I(\theta)$ is defined as:

$$I(\theta) = \left[nE\left(-\frac{\partial^2 \ln f(y)}{\partial \theta^2} \right) \right]^{-1}$$

If t is a differentiable function of the parameter θ then under the usual regularity conditions, for large sample sizes

$$Z = \frac{t(\theta) - t(\theta)}{\sqrt{\left[\frac{\partial t(\theta)}{\partial \theta}\right]^2 I(\theta)}}$$

has an approximately standard normal distribution.

5. Hypothesis tests for means

type H_0 H_a test statisticrejection regionlarge sample $\theta = \theta_0$ $\theta \neq \theta_0$ $z = \frac{\hat{\theta} - \theta_0}{\sigma/\sqrt{n}}$ $|z| > z_{\alpha/2}$ small sample $\theta = \theta_0$ $\theta \neq \theta_0$ $t = \frac{\hat{\theta} - \theta_0}{S/\sqrt{n}}$ $|t| > t_{\alpha/2, n-1}$

6. Large sample distribution of likelihood ratio test statistic

If λ is the test statistic for a likelihood ratio test of

$$H_0: \theta \in \Omega_0$$
 versus $H_a: \theta \in \Omega$

where the number of free parameters specified by the statement $\theta \in \Omega$ is one, then $-2 \ln \lambda$ is approximately distributed as a χ^2 random variable with one degree of freedom.

7. LINEAR MODELS

For the linear model

$$Y = X\beta + e$$

where the e_i are IID $N(0, \sigma_e^2)$, the least squares estimates $\hat{\beta}$ of the parameters β are given by:

$$\hat{\beta} = (X'X)^{-1}X'Y$$

where the columns of X are linearly independent. Furthermore, the vector of 'fitted values' is given by

$$X\hat{\beta} = X(X'X)^{-1}X'Y$$

and the vector of residuals is given by

$$e = Y - X\hat{\beta} = [I - X(X'X)^{-1}X']Y$$

8. MISCELLANEOUS FORMULAS

If Y is a vector of random variables, μ is the vector of expected values of the Y_i , that is, $E(Y) = \mu$, and V is the variance-covariance matrix of Y, then if t is a vector and A is a matrix,

$$E(t'Y) = t'\mu \quad V(t'y) = t'Vt \quad E(A'Y) = A'\mu \quad V(A'Y) = A'VA$$

Suppose Y has a multivariate normal distribution with mean vector 0 and variance-covariance matrix I (i.e., Y is a vector of IID N(0,1) random variables). Then:

1) The quadratic form Y'AY has a chi-square distribution with degrees of freedom equal to the rank of A if and only if A is idempotent, that is, $A^2 = A$.

2) The quadratic forms Y'AY and Y'BY are independently distributed if AB = 0

9. CRITICAL VALUES

If z is a N(0,1) random variable, then

$$P(-1.96 < z < 1.96) = 0.95$$

If t has a t-distribution with n degrees of freedom, then:

If n = 8 P(-2.306 < t < 2.306) = 0.95If n = 9 P(-2.262 < t < 2.262) = 0.95If n = 10 P(-2.228 < t < 2.228) = 0.95If n = 11 P(-2.201 < t < 2.201) = 0.95

If x has a χ^2 distribution with one degree of freedom, then

$$P(x > 0.00393) = .95$$