1. ASSIGNMENT 1

1.1. Problem 1. Suppose Y is a random variable with support on $[0, \infty)$ and density function $f_{y}(y)$. Define an new random variable

$$
Z=g(Y) \quad \text { where } \quad X=g(Y)=k Y, \quad k>0
$$

a) Find the density function of $Z, f_{z}(z)$.
b) Use the density functions of Y and Z to show that for $b>0$,

$$
P(0 \leq Y \leq b)=P(0 \leq Z \leq k b)
$$

1.2. Problem 2. Suppose $Y=\left(Y_{1}, \ldots, Y_{n}\right)$ is a vector of IID exponential random variables with parameter θ, and let $S=\sum_{i=1}^{n} Y_{i}$.
a) Find the density function of S (hint: use moment-generating functions)
b) Find the expected value and MSE of

$$
\hat{\theta}=\frac{S}{n}
$$

1.3. Problem 3. Suppose $Y=\left(Y_{1}, \ldots, Y_{n}\right)$ is a vector of IID exponential random variables with parameter θ, and let

$$
Y_{(1)}=\min \left(Y_{1}, \ldots, Y_{n}\right)
$$

a) Find the density function of $Y_{(1)}$
b) Find expected value and MSE of

$$
\hat{\theta}=n \cdot Y_{(1)}
$$

1.4. Problem 4. Suppose $\hat{\theta_{1}}$ and $\hat{\theta_{2}}$ are estimators of θ with

$$
E\left(\hat{\theta_{1}}\right)=E\left(\hat{\theta_{2}}\right)=\theta, \quad V\left(\hat{\theta_{1}}\right)=\sigma_{1}^{2}, \quad \text { and } V\left(\hat{\theta_{2}}\right)=\sigma_{2}^{2}
$$

Find the value of the constant a that minimizes

$$
V\left(\hat{\theta_{3}}\right) \quad \text { where } \quad \hat{\theta_{3}}=a \cdot \hat{\theta_{1}}+(1-a) \cdot \hat{\theta_{2}}
$$

