## 1. Background Material from Linear Algebra

It is assumed that you are familiar with the definition of a matrix and how to multiply vectors and matrices.

A vector or matrix is said to be $n \times m$ if it has $n$ rows and $m$ columns.
A vector or column vector will refer to an $n \times 1$ array:

$$
v=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]
$$

The transpose of a vector $v$, denoted by $v^{\prime}$ or $v^{T}$, is obtained by writing $v$ as a row vector:

$$
\text { if } \quad v=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right] \quad \text { then } \quad v^{\prime}=\left[\begin{array}{llll}
v_{1} & v_{2} & \cdots & v_{3}
\end{array}\right]
$$

In statistics texts, the prime notation is more common.
The transpose of a matrix $A$, denoted by $A^{\prime}$ or $A^{T}$, is obtained by interchanging the rows and columns of $A$. That is, the first column of $A$ becomes the first row of $A^{\prime}$, the second column of $A$ becomes the second row of $A^{\prime}$, and so on. For example,

$$
\text { if } \quad A=\left[\begin{array}{cc}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right] \quad \text { then } \quad A^{\prime}=\left[\begin{array}{lll}
a_{11} & a_{21} & a_{31} \\
a_{12} & a_{22} & a_{32}
\end{array}\right]
$$

The identity matrix $I$ or $I_{n}$ is a square matrix having ones on the main diagonal and zeroes elsewhere:

$$
I=\left[\begin{array}{llll}
1 & & & \\
& 1 & & \\
& & \ddots & \\
& & & 1
\end{array}\right]
$$

For any square matrix $A$,

$$
A I=I A=A
$$

With each square matrix $A$ there is associated a unique scalar called the determinant of $A$, denoted by $|A|$.

The rank of a matrix $A$, denoted by $\operatorname{Rank}(A)$ or $r(A)$, is the number of linearly independent rows (or colunms) that $A$ has. The number of linearly independent rows is always the same as the number of linearly independent columns.

The trace of an $n \times n$ matrix $A$, denoted by $\operatorname{Tr}(A)$, is the sum of its diagonal entries:

$$
\operatorname{Tr}(A)=\sum_{i=1}^{n} a_{i i}
$$

If the determinant of a matrix $A$ is not zero, there exists a unique inverse of $A$, denoted by $A^{-1}$, with the property that:

$$
A A^{-1}=A^{-1} A=I
$$

In general, multiplication of matrices is not commutative:

$$
A B \neq B A \quad \text { (in most cases) }
$$

An $n \times n$ matrix $A$ with the property that:

$$
a_{i j}=a_{j i} \quad \forall i, j \leq n
$$

is called symmetric.
An $n \times n$ matrix $A$ is said to be idempotent if

$$
A^{2}=A
$$

If $x$ and $y$ are vectors with $n$ elements, and $A$ is an $n \times n$ matrix, an expression of the form

$$
x^{\prime} A x
$$

is called a quadratic form.
An expression of the form

$$
x^{\prime} A y
$$

is called a bilinear form.

## 2. The Variance-Covariance Matrix

Suppose

$$
Y=\left[\begin{array}{c}
Y_{1} \\
Y_{2} \\
\vdots \\
Y_{n}
\end{array}\right]
$$

is a vector of jointly distributed random variables, the variance-covariance matrix $V$ of $Y$ is defined as:

$$
V=\left[\begin{array}{cccc}
\sigma_{1}^{2} & \sigma_{12} & \cdots & \sigma_{1 n} \\
\sigma_{12} & \sigma_{2}^{2} & \cdots & \sigma_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{1 n} & \sigma_{2 n} & \cdots & \sigma_{n}^{2}
\end{array}\right]
$$

That is,

$$
v_{i i}=\sigma_{i}^{2}=\operatorname{Var}\left(Y_{i}\right) \quad \text { and } \quad v_{i j}=\sigma_{i j}=\operatorname{Cov}\left(Y_{i}, Y_{j}\right)
$$

where
$\operatorname{Var}\left(Y_{i}\right)=E\left(Y_{i}^{2}\right)-\left[E\left(Y_{i}\right)\right]^{2} \quad$ and $\quad \operatorname{Cov}\left(Y_{i}, Y_{j}\right)=E\left(Y_{i} Y_{j}\right)-E\left(Y_{i}\right) E\left(Y_{j}\right)$
Note that $V$ is symmetric since $\operatorname{Cov}\left(Y_{i}, Y_{j}\right)$ is always equal to $\operatorname{Cov}\left(Y_{j}, Y_{i}\right)$.

## 3. Linear Combinations

If

$$
Y=\left[\begin{array}{c}
Y_{1} \\
Y_{2} \\
\vdots \\
Y_{n}
\end{array}\right]
$$

is a vector of random variables with expected value

$$
E(Y)=\mu=\left[\begin{array}{c}
E\left(Y_{1}\right) \\
E\left(Y_{2}\right) \\
\vdots \\
E\left(Y_{n}\right)
\end{array}\right]=\left[\begin{array}{c}
\mu_{1} \\
\mu_{2} \\
\vdots \\
\mu_{n}
\end{array}\right]
$$

and variance-covariance matrix

$$
V=\left[\begin{array}{cccc}
\sigma_{1}^{2} & \sigma_{12} & \cdots & \sigma_{1 n} \\
\sigma_{12} & \sigma_{2}^{2} & \cdots & \sigma_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{1 n} & \sigma_{2 n} & \cdots & \sigma_{n}^{2}
\end{array}\right]
$$

Any linear combination of the elements of $Y$ can be written in the form $t^{\prime} Y$ for some vector $t$ coefficients. If

$$
Y=\left[\begin{array}{c}
Y_{1} \\
Y_{2} \\
\vdots \\
Y_{n}
\end{array}\right]
$$

is a vector of random variables with expected value

$$
E(Y)=\mu=\left[\begin{array}{c}
E\left(Y_{1}\right) \\
E\left(Y_{2}\right) \\
\vdots \\
E\left(Y_{n}\right)
\end{array}\right]=\left[\begin{array}{c}
\mu_{1} \\
\mu_{2} \\
\vdots \\
\mu_{n}
\end{array}\right]
$$

and variance-covariance matrix

$$
V=\left[\begin{array}{cccc}
\sigma_{1}^{2} & \sigma_{12} & \cdots & \sigma_{1 n} \\
\sigma_{12} & \sigma_{2}^{2} & \cdots & \sigma_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{1 n} & \sigma_{2 n} & \cdots & \sigma_{n}^{2}
\end{array}\right]
$$

The expected value and variance of $t^{\prime} Y$ is:

$$
E\left(t^{\prime} Y\right)=t^{\prime} E(Y)=t^{\prime} \mu \quad \text { and } \quad \operatorname{Var}\left(t^{\prime} Y\right)=t^{\prime} V t
$$

Example. Suppose

$$
Y=\left[\begin{array}{l}
Y_{1} \\
Y_{2}
\end{array}\right]
$$

is a vector of random variables with expected value

$$
E(Y)=\mu=\left[\begin{array}{l}
E\left(Y_{1}\right) \\
E\left(Y_{2}\right)
\end{array}\right]=\left[\begin{array}{l}
\mu_{1} \\
\mu_{2}
\end{array}\right]
$$

and variance-covariance matrix

$$
V=\left[\begin{array}{cc}
\sigma_{1}^{2} & \sigma_{12} \\
\sigma_{12} & \sigma_{2}^{2}
\end{array}\right]
$$

Find the expected value and variance of $U=3 Y_{1}-4 Y_{2}$.
In this case,

$$
t=\left[\begin{array}{c}
3 \\
-4
\end{array}\right]
$$

so

$$
E\left(t^{\prime} Y\right)=t^{\prime} \mu=\left[\begin{array}{ll}
3 & -4
\end{array}\right]\left[\begin{array}{l}
\mu_{1} \\
\mu_{2}
\end{array}\right]=3 \mu_{1}-4 \mu_{2}
$$

and

$$
\begin{gathered}
\operatorname{Var}\left(t^{\prime} Y\right)=t^{\prime} V t=[3-4]\left[\begin{array}{cc}
\sigma_{1}^{2} & \sigma_{12} \\
\sigma_{12} & \sigma_{2}^{2}
\end{array}\right]\left[\begin{array}{c}
3 \\
-4
\end{array}\right] \\
=\left[\left(3 \sigma_{1}^{2}-4 \sigma_{12}\right)\left(3 \sigma_{12}-4 \sigma_{2}^{2}\right)\right]\left[\begin{array}{c}
3 \\
-4
\end{array}\right] \\
=9 \sigma_{1}^{2}-12 \sigma_{12}-12 \sigma_{12}+16 \sigma_{2}^{2} \\
=9 \sigma_{1}^{2}-24 \sigma_{12}+16 \sigma_{2}^{2}
\end{gathered}
$$

More generally, a vector of linear combinations of the elements of $Y$ can be written in the form $A^{\prime} Y$ for a matrix $A$ of coefficients. The expected value and variance-covariance matrix of $A^{\prime} Y$ is:

$$
E\left(A^{\prime} Y\right)=A^{\prime} E(Y)=A^{\prime} \mu \quad \text { and } \quad V=A^{\prime} V A
$$

Example. This time suppose

$$
U=\left[\begin{array}{l}
Y_{1}+Y_{2} \\
Y_{1}-Y_{2}
\end{array}\right]=A^{\prime} Y
$$

where

$$
A=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]
$$

Then

$$
E(U)=E\left(A^{\prime} Y\right)=A^{\prime} \mu=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
\mu_{1} \\
\mu_{2}
\end{array}\right]=\left[\begin{array}{l}
\mu_{1}+\mu_{2} \\
\mu_{1}-\mu_{2}
\end{array}\right]
$$

and the variance-covariance matrix of $A^{\prime} Y$ is:

$$
\begin{gathered}
V_{U}=A^{\prime} V A^{\prime}=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{cc}
\sigma_{1}^{2} & \sigma_{12} \\
\sigma_{12} & \sigma_{2}^{2}
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \\
=\left[\begin{array}{cc}
\sigma_{1}^{2}+\sigma_{12} & \sigma_{12}+\sigma_{2}^{2} \\
\sigma_{1}^{2}-\sigma_{12} & \sigma_{12}-\sigma_{2}^{2}
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \\
=\left[\begin{array}{cc}
\sigma_{1}^{2}+2 \sigma_{12}+\sigma_{2}^{2} & \sigma_{1}^{2}-\sigma_{2}^{2} \\
\sigma_{1}^{2}-\sigma_{2}^{2} & \sigma_{1}^{2}-2 \sigma_{12}+\sigma_{2}^{2}
\end{array}\right] \\
=\left[\begin{array}{cc}
\operatorname{Var}\left(Y_{1}+Y_{2}\right) & \operatorname{Cov}\left(Y_{1}+Y_{2}, Y_{1}-Y_{2}\right) \\
\operatorname{Cov}\left(Y_{1}+Y_{2}, Y_{1}-Y_{2}\right) & \operatorname{Var}\left(Y_{1}-Y_{2}\right)
\end{array}\right]
\end{gathered}
$$

From this result we see that, for example,

$$
\operatorname{Cov}\left(Y_{1}+Y_{2}, Y_{1}-Y_{2}\right)=\sigma_{1}^{2}-\sigma_{2}^{2}=\operatorname{Var}\left(Y_{1}\right)-\operatorname{Var}\left(Y_{2}\right)
$$

