1. BACKGROUND MATERIAL FROM LINEAR ALGEBRA

It is assumed that you are familiar with the definition of a matrix and how to multiply vectors and matrices.

A vector or matrix is said to be $n \times m$ if it has n rows and m columns.

A vector or column vector will refer to an $n \times 1$ array:

$$v = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$

The *transpose* of a vector v, denoted by v' or v^T , is obtained by writing v as a *row vector*:

if
$$v = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$
 then $v' = [v_1 \ v_2 \ \cdots \ v_3]$

In statistics texts, the prime notation is more common.

The transpose of a matrix A, denoted by A' or A^T , is obtained by interchanging the rows and columns of A. That is, the first column of A becomes the first row of A', the second column of A becomes the second row of A', and so on. For example,

if
$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix}$$
 then $A' = \begin{bmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \end{bmatrix}$

The *identity matrix* I or I_n is a square matrix having ones on the main diagonal and zeroes elsewhere:

$$I = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \end{bmatrix}$$

For any square matrix A,

$$AI = IA = A$$

With each square matrix A there is associated a unique scalar called the *determinant* of A, denoted by |A|.

The rank of a matrix A, denoted by Rank(A) or r(A), is the number of linearly independent rows (or columns) that A has. The number of linearly independent rows is always the same as the number of linearly independent columns.

The *trace* of an $n \times n$ matrix A, denoted by Tr(A), is the sum of its diagonal entries:

$$Tr(A) = \sum_{i=1}^{n} a_{ii}$$

If the determinant of a matrix A is not zero, there exists a unique *inverse* of A, denoted by A^{-1} , with the property that:

$$AA^{-1} = A^{-1}A = I$$

In general, multiplication of matrices is not commutative:

 $AB \neq BA$ (in most cases)

An $n \times n$ matrix A with the property that:

$$a_{ij} = a_{ji} \quad \forall i, j \le n$$

is called *symmetric*.

An $n \times n$ matrix A is said to be *idempotent* if

$$A^2 = A$$

If x and y are vectors with n elements, and A is an $n \times n$ matrix, an expression of the form

x'Ax

is called a *quadratic form*.

An expression of the form

x'Ay

is called a *bilinear form*.

Suppose

$$Y = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix}$$

is a vector of jointly distributed random variables, the *variance-covariance* matrix V of Y is defined as:

$$V = \begin{bmatrix} \sigma_1^2 & \sigma_{12} & \cdots & \sigma_{1n} \\ \sigma_{12} & \sigma_2^2 & \cdots & \sigma_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{1n} & \sigma_{2n} & \cdots & \sigma_n^2 \end{bmatrix}$$

That is,

$$v_{ii} = \sigma_i^2 = Var(Y_i)$$
 and $v_{ij} = \sigma_{ij} = Cov(Y_i, Y_j)$

where

$$Var(Y_i) = E(Y_i^2) - [E(Y_i)]^2$$
 and $Cov(Y_i, Y_j) = E(Y_iY_j) - E(Y_i)E(Y_j)$

Note that V is symmetric since $Cov(Y_i, Y_j)$ is always equal to $Cov(Y_j, Y_i)$.

3. Linear Combinations

If

$$Y = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix}$$

is a vector of random variables with expected value

$$E(Y) = \mu = \begin{bmatrix} E(Y_1) \\ E(Y_2) \\ \vdots \\ E(Y_n) \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_n \end{bmatrix}$$

and variance-covariance matrix

$$V = \begin{bmatrix} \sigma_1^2 & \sigma_{12} & \cdots & \sigma_{1n} \\ \sigma_{12} & \sigma_2^2 & \cdots & \sigma_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{1n} & \sigma_{2n} & \cdots & \sigma_n^2 \end{bmatrix}$$

Any linear combination of the elements of Y can be written in the form t'Y for some vector t coefficients. If

$$Y = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix}$$

is a vector of random variables with expected value

$$E(Y) = \mu = \begin{bmatrix} E(Y_1) \\ E(Y_2) \\ \vdots \\ E(Y_n) \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_n \end{bmatrix}$$

and variance-covariance matrix

$$V = \begin{bmatrix} \sigma_1^2 & \sigma_{12} & \cdots & \sigma_{1n} \\ \sigma_{12} & \sigma_2^2 & \cdots & \sigma_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{1n} & \sigma_{2n} & \cdots & \sigma_n^2 \end{bmatrix}$$

The expected value and variance of t'Y is:

$$E(t'Y) = t'E(Y) = t'\mu$$
 and $Var(t'Y) = t'Vt$

Example. Suppose

$$Y = \left[\begin{array}{c} Y_1 \\ Y_2 \end{array} \right]$$

is a vector of random variables with expected value

$$E(Y) = \mu = \begin{bmatrix} E(Y_1) \\ E(Y_2) \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}$$

and variance-covariance matrix

$$V = \left[\begin{array}{cc} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{array} \right]$$

Find the expected value and variance of $U = 3Y_1 - 4Y_2$. In this case,

$$t = \left[\begin{array}{c} 3\\ -4 \end{array} \right]$$

SO

$$E(t'Y) = t'\mu = [3 - 4] \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} = 3\mu_1 - 4\mu_2$$

and

$$Var(t'Y) = t'Vt = \begin{bmatrix} 3 & -4 \end{bmatrix} \begin{bmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{bmatrix} \begin{bmatrix} 3 \\ -4 \end{bmatrix}$$
$$= \begin{bmatrix} (3\sigma_1^2 - 4\sigma_{12}) & (3\sigma_{12} - 4\sigma_2^2) \end{bmatrix} \begin{bmatrix} 3 \\ -4 \end{bmatrix}$$
$$= 9\sigma_1^2 - 12\sigma_{12} - 12\sigma_{12} + 16\sigma_2^2$$
$$= 9\sigma_1^2 - 24\sigma_{12} + 16\sigma_2^2$$

More generally, a vector of linear combinations of the elements of Y can be written in the form A'Y for a matrix A of coefficients. The expected value and variance-covariance matrix of A'Y is:

$$E(A'Y) = A'E(Y) = A'\mu$$
 and $V = A'VA$

Example. This time suppose

$$U = \left[\begin{array}{c} Y_1 + Y_2 \\ Y_1 - Y_2 \end{array} \right] = A'Y$$

where

$$A = \left[\begin{array}{rrr} 1 & 1 \\ 1 & -1 \end{array} \right]$$

Then

$$E(U) = E(A'Y) = A'\mu = \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix} \begin{bmatrix} \mu_1\\ \mu_2 \end{bmatrix} = \begin{bmatrix} \mu_1 + \mu_2\\ \mu_1 - \mu_2 \end{bmatrix}$$

and the variance-covariance matrix of A'Y is:

$$V_{U} = A'VA' = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} \sigma_{1}^{2} & \sigma_{12} \\ \sigma_{12} & \sigma_{2}^{2} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$
$$= \begin{bmatrix} \sigma_{1}^{2} + \sigma_{12} & \sigma_{12} + \sigma_{2}^{2} \\ \sigma_{1}^{2} - \sigma_{12} & \sigma_{12} - \sigma_{2}^{2} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$
$$= \begin{bmatrix} \sigma_{1}^{2} + 2\sigma_{12} + \sigma_{2}^{2} & \sigma_{1}^{2} - \sigma_{2}^{2} \\ \sigma_{1}^{2} - \sigma_{2}^{2} & \sigma_{1}^{2} - 2\sigma_{12} + \sigma_{2}^{2} \end{bmatrix}$$
$$= \begin{bmatrix} Var(Y_{1} + Y_{2}) & Cov(Y_{1} + Y_{2}, Y_{1} - Y_{2}) \\ Cov(Y_{1} + Y_{2}, Y_{1} - Y_{2}) & Var(Y_{1} - Y_{2}) \end{bmatrix}$$

From this result we see that, for example,

$$Cov(Y_1 + Y_2, Y_1 - Y_2) = \sigma_1^2 - \sigma_2^2 = Var(Y_1) - Var(Y_2)$$

4. The Multivariate Normal Distribution

If Y has a univariate normal distribution $N(\mu, \sigma)$, the density function of Y is:

$$f(y) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}\right)$$

If

$$Y = \left[\begin{array}{c} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{array} \right]$$

has a multivariate normal distribution with mean vector

$$\mu = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_n \end{bmatrix}$$

and nonsingular variance-covariance matrix

$$V = \begin{bmatrix} \sigma_1^2 & \sigma_{12} & \cdots & \sigma_{1n} \\ \sigma_{12} & \sigma_2^2 & \cdots & \sigma_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{1n} & \sigma_{2n} & \cdots & \sigma_n^2 \end{bmatrix}$$

then the joint density function of Y is:

$$f(y_1, y_2, \dots, y_n) = \frac{1}{(2\pi)^{n/2} |V|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)' V^{-1}(x-\mu)\right)$$

Note that if all covariances are zero,

$$V = \begin{bmatrix} \sigma_1^2 & & & \\ & \sigma_2^2 & & \\ & & \ddots & \\ & & & \sigma_n^2 \end{bmatrix} \quad \text{and} \quad V^{-1} = \begin{bmatrix} \frac{1}{\sigma_1^2} & & & \\ & \frac{1}{\sigma_2^2} & & \\ & & \ddots & \\ & & & \frac{1}{\sigma_n^2} \end{bmatrix}$$

Because the determinant of a diagonal matrix is simply the product of the entries on the diagonal, $|V|^{1/2}$ reduces to:

$$\sqrt{|\Pi_{i=1}^n \sigma_i^2|} = \Pi_{i=1}^n \sigma_i$$

and the exponent reduces to:

$$-\frac{1}{2}(y-\mu)'V^{-1}(y-\mu) = \prod_{i=1}^{n} \frac{(y_i - \mu_i)^2}{\sigma_i^2}$$

so the joint density function factors into the product

$$f(y_1,\ldots,y_n) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma_i}} \exp\left(-\frac{1}{2} \frac{(y_i - \mu_i)^2}{\sigma_i^2}\right)$$

which is just the product of the n univariate densities for the individual Y_i . This establishes that having all covariances equal to zero is a sufficient condition for the components Y_i of a multivariate normal random vector Y to be independently distributed. This is not true for an arbitrary distribution.

5. DISTRIBUTION OF QUADRATIC FORMS

Suppose Y has a multivariate normal distribution with mean vector μ and variance-covariance matrix V. Very often we are interested in quadratic functions of the Y_i . As it turns out, these can be represented as quadratic forms, that is, expressions of the form

Y'AY

for some matrix A. The following very general theorem gives necessary and sufficient conditions for a quadratic form to have a *chi-square* (denoted χ^2) distribution:

Theorem (Distribution of a Quadratic Form). If Y has a multivariate normal distribution with mean vector μ and nonsingular variancecovariance matrix V, and A is an arbitrary matrix, the quadratic form

Y'AY

has a χ^2 distribution with degrees of freedom equal to the rank of A if and only if AV is idempotent.

Note: If $\mu = 0$, that is, the vector of means is zero, then Y'AY has a *central* χ^2 distribution, which is the one tabulated in the back of the text. Otherwise, Y'AY has what is called a *noncentral* χ^2 distribution. Many standard hypothesis testing procedures make use of test statistic that has a central χ^2 distribution when a certain hypothesis is true, and a noncentral χ^2 distribution otherwise.

Example. Suppose Z_i , $i = 1, \dots, n$ is a collection if IID (independent, identically distributed) random variables having a standard normal distribution N(0, 1). Then the vector $Z = (Z_1, \dots, Z_n)$ has a multivariate normal distribution with V = I. Consider the sum of squares:

$$\sum_{i=1}^n Z_i^2 = Y'IY$$

In this case, the matrix A of the quadratic form is A = I, so $AV = I^2$ and $(AV)^2 = I^4 = I = AV$. Since AV is idempotent and Rank(A) =n, the sum of the squares of the Z_i has a χ^2 distribution with n degrees of freedom.

Example. Now suppose the Z_i are IID $N(0, \sigma)$, so $V = \sigma^2 I$. We want to consider the distribution of

$$\frac{1}{\sigma^2} \sum_{i=1}^n (Y_i - \overline{Y})^2$$

As we have seen,

$$\sum_{i=1}^{n} (Y_i - \overline{Y})^2$$

can be written as

$$\sum_{i=1}^n Y_i^2 - \frac{1}{n} \left(\sum_{i=1}^n Y_i\right)^2$$

which can be written as a quadratic form

$$Y'\left(I-\frac{1}{n}J\right)Y$$

where J is a matrix with every entry equal to 1:

$$J = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \cdots & \vdots \\ 1 & 1 & \cdots & 1 \end{bmatrix}$$

and J^2 is a matrix with every entry equal to n:

$$J^{2} = \begin{bmatrix} n & n & \cdots & n \\ n & n & \cdots & n \\ \vdots & \vdots & \cdots & \vdots \\ n & n & \cdots & n \end{bmatrix} = nJ$$

so if

$$A = \frac{1}{\sigma^2} \left(I - \frac{1}{n}J \right) \quad and \quad V = \sigma^2 I$$

then

$$AV = I - \frac{1}{n}J \quad and \quad (AV)^2 = \left(I - \frac{1}{n}J\right)^2$$
$$= \left(I - \frac{1}{n}J\right)\left(I - \frac{1}{n}J\right) = I^2 - \frac{2}{n}J - \frac{1}{n^2}J^2$$

but $I^2 = I$, and $J^2 = nJ$ so this becomes

$$(AV)^{2} = I^{2} - \frac{2}{n}J - \frac{1}{n^{2}}J^{2} = I - \frac{2}{n}J + \frac{1}{n}J = I - \frac{1}{n}J = AV$$

If you add the first n-1 columns of the matrix I-1/nJ, you obtain the last row. In fact, it can be shown that the rank of this idempotent matrix is n-1, so the quadratic form Y'AY has a chi-square distribution with n-1 degrees of freedom.

The appearance of n-1 in formulas for the sample standard deviation is one of the more mysterious aspects of an introductory statistics course, but considering the above example it should be clear that the n-1 factor arises from the rank of a matrix.