1. Background Material from Linear Algebra

It is assumed that you are familiar with the definition of a matrix and how to multiply vectors and matrices.

A vector or matrix is said to be $n \times m$ if it has n rows and m columns.
A vector or column vector will refer to an $n \times 1$ array:

$$
v=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]
$$

The transpose of a vector v, denoted by v^{\prime} or v^{T}, is obtained by writing v as a row vector:

$$
\text { if } \quad v=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right] \quad \text { then } \quad v^{\prime}=\left[\begin{array}{llll}
v_{1} & v_{2} & \cdots & v_{3}
\end{array}\right]
$$

In statistics texts, the prime notation is more common.
The transpose of a matrix A, denoted by A^{\prime} or A^{T}, is obtained by interchanging the rows and columns of A. That is, the first column of A becomes the first row of A^{\prime}, the second column of A becomes the second row of A^{\prime}, and so on. For example,

$$
\text { if } \quad A=\left[\begin{array}{cc}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right] \quad \text { then } \quad A^{\prime}=\left[\begin{array}{lll}
a_{11} & a_{21} & a_{31} \\
a_{12} & a_{22} & a_{32}
\end{array}\right]
$$

The identity matrix I or I_{n} is a square matrix having ones on the main diagonal and zeroes elsewhere:

$$
I=\left[\begin{array}{llll}
1 & & & \\
& 1 & & \\
& & \ddots & \\
& & & 1
\end{array}\right]
$$

For any square matrix A,

$$
A I=I A=A
$$

With each square matrix A there is associated a unique scalar called the determinant of A, denoted by $|A|$.

The rank of a matrix A, denoted by $\operatorname{Rank}(A)$ or $r(A)$, is the number of linearly independent rows (or colunms) that A has. The number of linearly independent rows is always the same as the number of linearly independent columns.

The trace of an $n \times n$ matrix A, denoted by $\operatorname{Tr}(A)$, is the sum of its diagonal entries:

$$
\operatorname{Tr}(A)=\sum_{i=1}^{n} a_{i i}
$$

If the determinant of a matrix A is not zero, there exists a unique inverse of A, denoted by A^{-1}, with the property that:

$$
A A^{-1}=A^{-1} A=I
$$

In general, multiplication of matrices is not commutative:

$$
A B \neq B A \quad \text { (in most cases) }
$$

An $n \times n$ matrix A with the property that:

$$
a_{i j}=a_{j i} \quad \forall i, j \leq n
$$

is called symmetric.
An $n \times n$ matrix A is said to be idempotent if

$$
A^{2}=A
$$

If x and y are vectors with n elements, and A is an $n \times n$ matrix, an expression of the form

$$
x^{\prime} A x
$$

is called a quadratic form.
An expression of the form

$$
x^{\prime} A y
$$

is called a bilinear form.

2. The Variance-Covariance Matrix

Suppose

$$
Y=\left[\begin{array}{c}
Y_{1} \\
Y_{2} \\
\vdots \\
Y_{n}
\end{array}\right]
$$

is a vector of jointly distributed random variables, the variance-covariance matrix V of Y is defined as:

$$
V=\left[\begin{array}{cccc}
\sigma_{1}^{2} & \sigma_{12} & \cdots & \sigma_{1 n} \\
\sigma_{12} & \sigma_{2}^{2} & \cdots & \sigma_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{1 n} & \sigma_{2 n} & \cdots & \sigma_{n}^{2}
\end{array}\right]
$$

That is,

$$
v_{i i}=\sigma_{i}^{2}=\operatorname{Var}\left(Y_{i}\right) \quad \text { and } \quad v_{i j}=\sigma_{i j}=\operatorname{Cov}\left(Y_{i}, Y_{j}\right)
$$

where
$\operatorname{Var}\left(Y_{i}\right)=E\left(Y_{i}^{2}\right)-\left[E\left(Y_{i}\right)\right]^{2} \quad$ and $\quad \operatorname{Cov}\left(Y_{i}, Y_{j}\right)=E\left(Y_{i} Y_{j}\right)-E\left(Y_{i}\right) E\left(Y_{j}\right)$
Note that V is symmetric since $\operatorname{Cov}\left(Y_{i}, Y_{j}\right)$ is always equal to $\operatorname{Cov}\left(Y_{j}, Y_{i}\right)$.

3. Linear Combinations

If

$$
Y=\left[\begin{array}{c}
Y_{1} \\
Y_{2} \\
\vdots \\
Y_{n}
\end{array}\right]
$$

is a vector of random variables with expected value

$$
E(Y)=\mu=\left[\begin{array}{c}
E\left(Y_{1}\right) \\
E\left(Y_{2}\right) \\
\vdots \\
E\left(Y_{n}\right)
\end{array}\right]=\left[\begin{array}{c}
\mu_{1} \\
\mu_{2} \\
\vdots \\
\mu_{n}
\end{array}\right]
$$

and variance-covariance matrix

$$
V=\left[\begin{array}{cccc}
\sigma_{1}^{2} & \sigma_{12} & \cdots & \sigma_{1 n} \\
\sigma_{12} & \sigma_{2}^{2} & \cdots & \sigma_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{1 n} & \sigma_{2 n} & \cdots & \sigma_{n}^{2}
\end{array}\right]
$$

Any linear combination of the elements of Y can be written in the form $t^{\prime} Y$ for some vector t coefficients. If

$$
Y=\left[\begin{array}{c}
Y_{1} \\
Y_{2} \\
\vdots \\
Y_{n}
\end{array}\right]
$$

is a vector of random variables with expected value

$$
E(Y)=\mu=\left[\begin{array}{c}
E\left(Y_{1}\right) \\
E\left(Y_{2}\right) \\
\vdots \\
E\left(Y_{n}\right)
\end{array}\right]=\left[\begin{array}{c}
\mu_{1} \\
\mu_{2} \\
\vdots \\
\mu_{n}
\end{array}\right]
$$

and variance-covariance matrix

$$
V=\left[\begin{array}{cccc}
\sigma_{1}^{2} & \sigma_{12} & \cdots & \sigma_{1 n} \\
\sigma_{12} & \sigma_{2}^{2} & \cdots & \sigma_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{1 n} & \sigma_{2 n} & \cdots & \sigma_{n}^{2}
\end{array}\right]
$$

The expected value and variance of $t^{\prime} Y$ is:

$$
E\left(t^{\prime} Y\right)=t^{\prime} E(Y)=t^{\prime} \mu \quad \text { and } \quad \operatorname{Var}\left(t^{\prime} Y\right)=t^{\prime} V t
$$

Example. Suppose

$$
Y=\left[\begin{array}{l}
Y_{1} \\
Y_{2}
\end{array}\right]
$$

is a vector of random variables with expected value

$$
E(Y)=\mu=\left[\begin{array}{l}
E\left(Y_{1}\right) \\
E\left(Y_{2}\right)
\end{array}\right]=\left[\begin{array}{l}
\mu_{1} \\
\mu_{2}
\end{array}\right]
$$

and variance-covariance matrix

$$
V=\left[\begin{array}{cc}
\sigma_{1}^{2} & \sigma_{12} \\
\sigma_{12} & \sigma_{2}^{2}
\end{array}\right]
$$

Find the expected value and variance of $U=3 Y_{1}-4 Y_{2}$.
In this case,

$$
t=\left[\begin{array}{c}
3 \\
-4
\end{array}\right]
$$

so

$$
E\left(t^{\prime} Y\right)=t^{\prime} \mu=[3-4]\left[\begin{array}{l}
\mu_{1} \\
\mu_{2}
\end{array}\right]=3 \mu_{1}-4 \mu_{2}
$$

and

$$
\begin{gathered}
\operatorname{Var}\left(t^{\prime} Y\right)=t^{\prime} V t=[3-4]\left[\begin{array}{cc}
\sigma_{1}^{2} & \sigma_{12} \\
\sigma_{12} & \sigma_{2}^{2}
\end{array}\right]\left[\begin{array}{c}
3 \\
-4
\end{array}\right] \\
=\left[\left(3 \sigma_{1}^{2}-4 \sigma_{12}\right)\left(3 \sigma_{12}-4 \sigma_{2}^{2}\right)\right]\left[\begin{array}{c}
3 \\
-4
\end{array}\right] \\
=9 \sigma_{1}^{2}-12 \sigma_{12}-12 \sigma_{12}+16 \sigma_{2}^{2} \\
=9 \sigma_{1}^{2}-24 \sigma_{12}+16 \sigma_{2}^{2}
\end{gathered}
$$

More generally, a vector of linear combinations of the elements of Y can be written in the form $A^{\prime} Y$ for a matrix A of coefficients. The expected value and variance-covariance matrix of $A^{\prime} Y$ is:

$$
E\left(A^{\prime} Y\right)=A^{\prime} E(Y)=A^{\prime} \mu \quad \text { and } \quad V=A^{\prime} V A
$$

Example. This time suppose

$$
U=\left[\begin{array}{l}
Y_{1}+Y_{2} \\
Y_{1}-Y_{2}
\end{array}\right]=A^{\prime} Y
$$

where

$$
A=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]
$$

Then

$$
E(U)=E\left(A^{\prime} Y\right)=A^{\prime} \mu=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
\mu_{1} \\
\mu_{2}
\end{array}\right]=\left[\begin{array}{l}
\mu_{1}+\mu_{2} \\
\mu_{1}-\mu_{2}
\end{array}\right]
$$

and the variance-covariance matrix of $A^{\prime} Y$ is:

$$
\begin{gathered}
V_{U}=A^{\prime} V A^{\prime}=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{cc}
\sigma_{1}^{2} & \sigma_{12} \\
\sigma_{12} & \sigma_{2}^{2}
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \\
=\left[\begin{array}{cc}
\sigma_{1}^{2}+\sigma_{12} & \sigma_{12}+\sigma_{2}^{2} \\
\sigma_{1}^{2}-\sigma_{12} & \sigma_{12}-\sigma_{2}^{2}
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \\
=\left[\begin{array}{cc}
\sigma_{1}^{2}+2 \sigma_{12}+\sigma_{2}^{2} & \sigma_{1}^{2}-\sigma_{2}^{2} \\
\sigma_{1}^{2}-\sigma_{2}^{2} & \sigma_{1}^{2}-2 \sigma_{12}+\sigma_{2}^{2}
\end{array}\right] \\
=\left[\begin{array}{cc}
\operatorname{Var}\left(Y_{1}+Y_{2}\right) & \operatorname{Cov}\left(Y_{1}+Y_{2}, Y_{1}-Y_{2}\right) \\
\operatorname{Cov}\left(Y_{1}+Y_{2}, Y_{1}-Y_{2}\right) & \operatorname{Var}\left(Y_{1}-Y_{2}\right)
\end{array}\right]
\end{gathered}
$$

From this result we see that, for example,

$$
\operatorname{Cov}\left(Y_{1}+Y_{2}, Y_{1}-Y_{2}\right)=\sigma_{1}^{2}-\sigma_{2}^{2}=\operatorname{Var}\left(Y_{1}\right)-\operatorname{Var}\left(Y_{2}\right)
$$

4. The Multivariate Normal Distribution

If Y has a univariate normal distribution $N(\mu, \sigma)$, the density function of Y is:

$$
f(y)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{1}{2} \frac{(x-\mu)^{2}}{\sigma^{2}}\right)
$$

If

$$
Y=\left[\begin{array}{c}
Y_{1} \\
Y_{2} \\
\vdots \\
Y_{n}
\end{array}\right]
$$

has a multivariate normal distribution with mean vector

$$
\mu=\left[\begin{array}{c}
\mu_{1} \\
\mu_{2} \\
\vdots \\
\mu_{n}
\end{array}\right]
$$

and nonsingular variance-covariance matrix

$$
V=\left[\begin{array}{cccc}
\sigma_{1}^{2} & \sigma_{12} & \cdots & \sigma_{1 n} \\
\sigma_{12} & \sigma_{2}^{2} & \cdots & \sigma_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{1 n} & \sigma_{2 n} & \cdots & \sigma_{n}^{2}
\end{array}\right]
$$

then the joint density function of Y is:

$$
f\left(y_{1}, y_{2}, \ldots, y_{n}\right)=\frac{1}{(2 \pi)^{n / 2}|V|^{1 / 2}} \exp \left(-\frac{1}{2}(x-\mu)^{\prime} V^{-1}(x-\mu)\right)
$$

Note that if all covariances are zero,

$$
V=\left[\begin{array}{llll}
\sigma_{1}^{2} & & & \\
& \sigma_{2}^{2} & & \\
& & \ddots & \\
& & & \sigma_{n}^{2}
\end{array}\right] \text { and } \quad V^{-1}=\left[\begin{array}{cccc}
\frac{1}{\sigma_{1}^{2}} & & & \\
& \frac{1}{\sigma_{2}^{2}} & & \\
& & \ddots & \\
& & & {\frac{1}{\sigma_{n}}}^{2}
\end{array}\right]
$$

Because the determinant of a diagonal matrix is simply the product of the entries on the diagonal, $|V|^{1 / 2}$ reduces to:

$$
\sqrt{\left|\Pi_{i=1}^{n} \sigma_{i}^{2}\right|}=\Pi_{i=1}^{n} \sigma_{i}
$$

and the exponent reduces to:

$$
-\frac{1}{2}(y-\mu)^{\prime} V^{-1}(y-\mu)=\Pi_{i=1}^{n} \frac{\left(y_{i}-\mu_{i}\right)^{2}}{\sigma_{i}^{2}}
$$

so the joint density function factors into the product

$$
f\left(y_{1}, \ldots, y_{n}\right)=\Pi_{i=1}^{n} \frac{1}{\sqrt{2 \pi} \sigma_{i}} \exp \left(-\frac{1}{2} \frac{\left(y_{i}-\mu_{i}\right)^{2}}{\sigma_{i}^{2}}\right)
$$

which is just the product of the n univariate densities for the individual Y_{i}. This establishes that having all covariances equal to zero is a sufficient condition for the components Y_{i} of a multivariate normal random vector Y to be independently distributed. This is not true for an arbitrary distribution.

5. Distribution of Quadratic Forms

Suppose Y has a multivariate normal distribution with mean vector μ and variance-covariance matrix V. Very often we are interested in quadratic functions of the Y_{i}. As it turns out, these can be represented as quadratic forms, that is, expressions of the form

$$
Y^{\prime} A Y
$$

for some matrix A. The following very general theorem gives necessary and sufficient conditions for a quadratic form to have a chi-square (denoted χ^{2}) distribution:
Theorem (Distribution of a Quadratic Form). If Y has a multivariate normal distribution with mean vector μ and nonsingular variancecovariance matrix V, and A is an arbitrary matrix, the quadratic form

$$
Y^{\prime} A Y
$$

has a χ^{2} distribution with degrees of freedom equal to the rank of A if and only if $A V$ is idempotent.

Note: If $\mu=0$, that is, the vector of means is zero, then $Y^{\prime} A Y$ has a central χ^{2} distribution, which is the one tabulated in the back of the text. Otherwise, $Y^{\prime} A Y$ has what is called a noncentral χ^{2} distribution. Many standard hypothesis testing procedures make use of test statistic
that has a central χ^{2} distribution when a certain hypothesis is true, and a noncentral χ^{2} distribution otherwise.

Example. Suppose $Z_{i}, i=1, \cdots, n$ is a collection if IID (independent, identically distributed) random variables having a standard normal distribution $N(0,1)$. Then the vector $Z=\left(Z_{1}, \ldots, Z_{n}\right)$ has a multivariate normal distribution with $V=I$. Consider the sum of squares:

$$
\sum_{i=1}^{n} Z_{i}^{2}=Y^{\prime} I Y
$$

In this case, the matrix A of the quadratic form is $A=I$, so $A V=I^{2}$ and $(A V)^{2}=I^{4}=I=A V$. Since $A V$ is idempotent and $\operatorname{Rank}(A)=$ n, the sum of the squares of the Z_{i} has a χ^{2} distribution with n degrees of freedom.

Example. Now suppose the Z_{i} are $I I D N(0, \sigma)$, so $V=\sigma^{2} I$. We want to consider the distribution of

$$
\frac{1}{\sigma^{2}} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}
$$

As we have seen,

$$
\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}
$$

can be written as

$$
\sum_{i=1}^{n} Y_{i}^{2}-\frac{1}{n}\left(\sum_{i=1}^{n} Y_{i}\right)^{2}
$$

which can be written as a quadratic form

$$
Y^{\prime}\left(I-\frac{1}{n} J\right) Y
$$

where J is a matrix with every entry equal to 1:

$$
J=\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
1 & 1 & \cdots & 1 \\
\vdots & \vdots & \cdots & \vdots \\
1 & 1 & \cdots & 1
\end{array}\right]
$$

and J^{2} is a matrix with every entry equal to n :

$$
J^{2}=\left[\begin{array}{cccc}
n & n & \cdots & n \\
n & n & \cdots & n \\
\vdots & \vdots & \cdots & \vdots \\
n & n & \cdots & n
\end{array}\right]=n J
$$

so if

$$
A=\frac{1}{\sigma^{2}}\left(I-\frac{1}{n} J\right) \quad \text { and } \quad V=\sigma^{2} I
$$

then

$$
\begin{aligned}
& A V=I-\frac{1}{n} J \quad \text { and } \quad(A V)^{2}=\left(I-\frac{1}{n} J\right)^{2} \\
& =\left(I-\frac{1}{n} J\right)\left(I-\frac{1}{n} J\right)=I^{2}-\frac{2}{n} J-\frac{1}{n^{2}} J^{2}
\end{aligned}
$$

but $I^{2}=I$, and $J^{2}=n J$ so this becomes

$$
(A V)^{2}=I^{2}-\frac{2}{n} J-\frac{1}{n^{2}} J^{2}=I-\frac{2}{n} J+\frac{1}{n} J=I-\frac{1}{n} J=A V
$$

If you add the first $n-1$ columns of the matrix $I-1 / n J$, you obtain the last row. In fact, it can be shown that the rank of this idempotent matrix is $n-1$, so the quadratic form $Y^{\prime} A Y$ has a chi-square distribution with $n-1$ degrees of freedom.

The appearance of $n-1$ in formulas for the sample standard deviation is one of the more mysterious aspects of an introductory statistics course, but considering the above example it should be clear that the $n-1$ factor arises from the rank of a matrix.

