
1. Background Material from Linear Algebra

It is assumed that you are familiar with the definition of a matrix
and how to multiply vectors and matrices.

A vector or matrix is said to be n×m if it has n rows and m columns.

A vector or column vector will refer to an n × 1 array:

v =









v1

v2

...
vn









The transpose of a vector v, denoted by v′ or vT , is obtained by writing
v as a row vector :

if v =









v1

v2

...
vn









then v′ = [v1 v2 · · · v3]

In statistics texts, the prime notation is more common.

The transpose of a matrix A, denoted by A′ or AT , is obtained by
interchanging the rows and columns of A. That is, the first column of
A becomes the first row of A′, the second column of A becomes the
second row of A′, and so on. For example,

if A =





a11 a12

a21 a22

a31 a32



 then A′ =

[

a11 a21 a31

a12 a22 a32

]

The identity matrix I or In is a square matrix having ones on the main
diagonal and zeroes elsewhere:

I =









1
1

. . .

1









For any square matrix A,

AI = IA = A



With each square matrix A there is associated a unique scalar called
the determinant of A, denoted by |A|.

The rank of a matrix A, denoted by Rank(A) or r(A), is the number
of linearly independent rows (or colunms) that A has. The number of
linearly independent rows is always the same as the number of linearly
independent columns.

The trace of an n × n matrix A, denoted by Tr(A), is the sum of its
diagonal entries:

Tr(A) =

n
∑

i=1

aii

If the determinant of a matrix A is not zero, there exists a unique
inverse of A, denoted by A−1, with the property that:

AA−1 = A−1A = I

In general, multiplication of matrices is not commutative:

AB 6= BA (in most cases)

An n × n matrix A with the property that:

aij = aji ∀i, j ≤ n

is called symmetric.

An n × n matrix A is said to be idempotent if

A2 = A

If x and y are vectors with n elements, and A is an n × n matrix, an
expression of the form

x′Ax

is called a quadratic form.

An expression of the form

x′Ay

is called a bilinear form.



2. The Variance-Covariance Matrix

Suppose

Y =









Y1

Y2

...
Yn









is a vector of jointly distributed random variables, the variance-covariance
matrix V of Y is defined as:

V =









σ2

1
σ12 · · · σ1n

σ12 σ2

2
· · · σ2n

...
...

. . .
...

σ1n σ2n · · · σ2

n









That is,

vii = σ2

i = V ar(Yi) and vij = σij = Cov(Yi, Yj)

where

V ar(Yi) = E(Y 2

i )−[E(Yi)]
2 and Cov(Yi, Yj) = E(YiYj)−E(Yi)E(Yj)

Note that V is symmetric since Cov(Yi, Yj) is always equal to Cov(Yj, Yi).

3. Linear Combinations

If

Y =









Y1

Y2

...
Yn









is a vector of random variables with expected value

E(Y ) = µ =









E(Y1)
E(Y2)

...
E(Yn)









=









µ1

µ2

...
µn









and variance-covariance matrix

V =









σ2

1
σ12 · · · σ1n

σ12 σ2

2
· · · σ2n

...
...

. . .
...

σ1n σ2n · · · σ2

n











Any linear combination of the elements of Y can be written in the form
t′Y for some vector t coefficients. If

Y =









Y1

Y2

...
Yn









is a vector of random variables with expected value

E(Y ) = µ =









E(Y1)
E(Y2)

...
E(Yn)









=









µ1

µ2

...
µn









and variance-covariance matrix

V =









σ2

1
σ12 · · · σ1n

σ12 σ2

2
· · · σ2n

...
...

. . .
...

σ1n σ2n · · · σ2

n









The expected value and variance of t′Y is:

E(t′Y ) = t′E(Y ) = t′µ and V ar(t′Y ) = t′V t

Example. Suppose

Y =

[

Y1

Y2

]

is a vector of random variables with expected value

E(Y ) = µ =

[

E(Y1)
E(Y2)

]

=

[

µ1

µ2

]

and variance-covariance matrix

V =

[

σ2

1
σ12

σ12 σ2

2

]

Find the expected value and variance of U = 3Y1 − 4Y2.

In this case,

t =

[

3
−4

]



so

E(t′Y ) = t′µ = [3 − 4]

[

µ1

µ2

]

= 3µ1 − 4µ2

and

V ar(t′Y ) = t′V t = [3 − 4]

[

σ2

1
σ12

σ12 σ2

2

] [

3
−4

]

= [(3σ2

1
− 4σ12) (3σ12 − 4σ2

2
)]

[

3
−4

]

= 9σ2

1
− 12σ12 − 12σ12 + 16σ2

2

= 9σ2

1
− 24σ12 + 16σ2

2

More generally, a vector of linear combinations of the elements of
Y can be written in the form A′Y for a matrix A of coefficients. The
expected value and variance-covariance matrix of A′Y is:

E(A′Y ) = A′E(Y ) = A′µ and V = A′V A

Example. This time suppose

U =

[

Y1 + Y2

Y1 − Y2

]

= A′Y

where

A =

[

1 1
1 −1

]

Then

E(U) = E(A′Y ) = A′µ =

[

1 1
1 −1

] [

µ1

µ2

]

=

[

µ1 + µ2

µ1 − µ2

]

and the variance-covariance matrix of A′Y is:

VU = A′V A′ =

[

1 1
1 −1

] [

σ2

1
σ12

σ12 σ2

2

] [

1 1
1 −1

]

=

[

σ2

1
+ σ12 σ12 + σ2

2

σ2

1
− σ12 σ12 − σ2

2

] [

1 1
1 −1

]

=

[

σ2

1
+ 2σ12 + σ2

2
σ2

1
− σ2

2

σ2

1
− σ2

2
σ2

1
− 2σ12 + σ2

2

]

=

[

V ar(Y1 + Y2) Cov(Y1 + Y2, Y1 − Y2)
Cov(Y1 + Y2, Y1 − Y2) V ar(Y1 − Y2)

]



From this result we see that, for example,

Cov(Y1 + Y2, Y1 − Y2) = σ2

1
− σ2

2
= V ar(Y1) − V ar(Y2)

4. The Multivariate Normal Distribution

If Y has a univariate normal distribution N(µ, σ), the density func-
tion of Y is:

f(y) =
1√
2πσ

exp

(

−1

2

(x − µ)2

σ2

)

If

Y =









Y1

Y2

...
Yn









has a multivariate normal distribution with mean vector

µ =









µ1

µ2

...
µn









and nonsingular variance-covariance matrix

V =









σ2

1
σ12 · · · σ1n

σ12 σ2

2
· · · σ2n

...
...

. . .
...

σ1n σ2n · · · σ2

n









then the joint density function of Y is:

f(y1, y2, . . . , yn) =
1

(2π)n/2|V |1/2
exp

(

−1

2
(x − µ)′V −1(x − µ)

)

Note that if all covariances are zero,

V =









σ2

1

σ2

2

. . .
σ2

n









and V −1 =













1

σ2

1

1

σ2

2

. . .
1

σn

2















Because the determinant of a diagonal matrix is simply the product of
the entries on the diagonal, |V |1/2 reduces to:

√

|Πn
i=1

σ2

i | = Πn
i=1

σi

and the exponent reduces to:

−1

2
(y − µ)′V −1(y − µ) = Πn

i=1

(yi − µi)
2

σ2

i

so the joint density function factors into the product

f(y1, . . . , yn) = Πn
i=1

1√
2πσi

exp

(

−1

2

(yi − µi)
2

σ2

i

)

which is just the product of the n univariate densities for the individ-
ual Yi. This establishes that having all covariances equal to zero is
a sufficient condition for the components Yi of a multivariate normal
random vector Y to be independently distributed. This is not true for
an arbitrary distribution.

5. Distribution of Quadratic Forms

Suppose Y has a multivariate normal distribution with mean vector
µ and variance-covariance matrix V . Very often we are interested in
quadratic functions of the Yi. As it turns out, these can be represented
as quadratic forms, that is, expressions of the form

Y ′AY

for some matrix A. The following very general theorem gives neces-
sary and sufficient conditions for a quadratic form to have a chi-square
(denoted χ2) distribution:

Theorem (Distribution of a Quadratic Form). If Y has a multivari-
ate normal distribution with mean vector µ and nonsingular variance-
covariance matrix V , and A is an arbitrary matrix, the quadratic form

Y ′AY

has a χ2 distribution with degrees of freedom equal to the rank of A if
and only if AV is idempotent.

Note: If µ = 0, that is, the vector of means is zero, then Y ′AY has
a central χ2 distribution, which is the one tabulated in the back of the
text. Otherwise, Y ′AY has what is called a noncentral χ2 distribution.
Many standard hypothesis testing procedures make use of test statistic



that has a central χ2 distribution when a certain hypothesis is true,
and a noncentral χ2 distribution otherwise.

Example. Suppose Zi, i = 1, · · · , n is a collection if IID (independent,
identically distributed) random variables having a standard normal dis-
tribution N(0, 1). Then the vector Z = (Z1, . . . , Zn) has a multivariate
normal distribution with V = I. Consider the sum of squares:

n
∑

i=1

Z2

i = Y ′IY

In this case, the matrix A of the quadratic form is A = I, so AV = I2

and (AV )2 = I4 = I = AV . Since AV is idempotent and Rank(A) =
n, the sum of the squares of the Zi has a χ2 distribution with n degrees
of freedom.

Example. Now suppose the Zi are IID N(0, σ), so V = σ2I. We want
to consider the distribution of

1

σ2

n
∑

i=1

(Yi − Y )2

As we have seen,
n
∑

i=1

(Yi − Y )2

can be written as
n
∑

i=1

Y 2

i − 1

n

(

n
∑

i=1

Yi

)2

which can be written as a quadratic form

Y ′

(

I − 1

n
J

)

Y

where J is a matrix with every entry equal to 1:

J =









1 1 · · · 1
1 1 · · · 1
...

... · · · ...
1 1 · · · 1











and J2 is a matrix with every entry equal to n:

J2 =









n n · · · n
n n · · · n
...

... · · · ...
n n · · · n









= nJ

so if

A =
1

σ2

(

I − 1

n
J

)

and V = σ2I

then

AV = I − 1

n
J and (AV )2 =

(

I − 1

n
J

)2

=

(

I − 1

n
J

)(

I − 1

n
J

)

= I2 − 2

n
J − 1

n2
J2

but I2 = I, and J2 = nJ so this becomes

(AV )2 = I2 − 2

n
J − 1

n2
J2 = I − 2

n
J +

1

n
J = I − 1

n
J = AV

If you add the first n−1 columns of the matrix I−1/nJ , you obtain the
last row. In fact, it can be shown that the rank of this idempotent matrix
is n−1, so the quadratic form Y ′AY has a chi-square distribution with
n − 1 degrees of freedom.

The appearance of n − 1 in formulas for the sample standard devia-
tion is one of the more mysterious aspects of an introductory statistics
course, but considering the above example it should be clear that the
n − 1 factor arises from the rank of a matrix.


