1. BACKGROUND MATERIAL FROM LINEAR ALGEBRA

It is assumed that you are familiar with the definition of a matrix
and how to multiply vectors and matrices.

A vector or matrix is said to be n x m if it has n rows and m columns.

A wvector or column vector will refer to an n x 1 array:

(%1
V2

Un

The transpose of a vector v, denoted by v’ or v7, is obtained by writing
v as a row vector:
U1
. U2 /
it v=1| . then o' ={[vy vy « - v3]
Un

In statistics texts, the prime notation is more common.

The transpose of a matrix A, denoted by A’ or AT, is obtained by
interchanging the rows and columns of A. That is, the first column of
A becomes the first row of A’, the second column of A becomes the
second row of A’, and so on. For example,

ap; a2

. a a a
if A= 21 922 then A, = 1 21 31
a12 Q22 (32
azy asz

The identity matriz I or I, is a square matrix having ones on the main
diagonal and zeroes elsewhere:

1

For any square matrix A,

Al =TA=A



With each square matrix A there is associated a unique scalar called
the determinant of A, denoted by |A|.

The rank of a matrix A, denoted by Rank(A) or r(A), is the number
of linearly independent rows (or colunms) that A has. The number of
linearly independent rows is always the same as the number of linearly
independent columns.

The trace of an n x n matrix A, denoted by Tr(A), is the sum of its
diagonal entries:

T’I“(A) = i (077
i=1

If the determinant of a matrix A is not zero, there exists a unique
inverse of A, denoted by A~!, with the property that:

AAT T =ATTA=1T

In general, multiplication of matrices is not commutative:

AB # BA (in most cases)

An n x n matrix A with the property that:
a;; = a; Vi,j <n
is called symmetric.

An n x n matrix A is said to be idempotent if

A=A

If x and y are vectors with n elements, and A is an n X n matrix, an
expression of the form

' Az
is called a quadratic form.

An expression of the form
7 Ay

is called a bilinear form.



2. THE VARIANCE-COVARIANCE MATRIX

Suppose

is a vector of jointly distributed random variables, the variance-covariance
matriz V of Y is defined as:

2
01 012 -+ Oin
2
012 03 -+ O2pn
V= .
2
Oin O2n - 0,
That is,
vi =o0; =Var(V;) and vy = o, = Cov(Y;,Y;)
where

Var(Y;) = E(Y?)~[E(Y)]? and Cou(Y,,Y;) = E(Y;Y;)-E(Y:) E(Y;)
Note that V' is symmetric since Cov(Y;,Y;) is always equal to Cov(Y}, Y;).

3. LINEAR COMBINATIONS

If
Y1
yo|
Y,
is a vector of random variables with expected value
E(Y1) H1
E (Y2) H2
E(Y) = M = . = .
E (Yn) Hp,
and variance-covariance matrix
g % 012 "+ Oin
012 O 3 Tt O2p

V:

Oln O2n - g



Any linear combination of the elements of Y can be written in the form
t'Y for some vector t coefficients. If

Y,

is a vector of random variables with expected value

E(Y1) H1
E(Y)=p= E(Y2) _ ,U:2
E(Yy) fin
and variance-covariance matrix
9 % 012+ Oin
v 019 Jg e U?n
Cin O - G2

The expected value and variance of 'Y is:

EXY)=tE(Y)=tp and Var(t'V)=1tVt

v ]
1s a vector of random variables with expected value
E(Y;
=) == i = [ ]
and variance-covariance matrizc
vl %]

Find the expected value and variance of U = 3Y, — 4Y5.

Example. Suppose

In this case,



S0

BUY) =t =[5 — 4] [ " } 3 — A
2
and

012 0'% —4

Var(t'Y) =t'Vt =[3 — 4] { oy ] { : ]

— [(30% — 4015) (301 — 402)] { _34 }

=907 — 12019 — 12075 + 1603
= 90? — 24015 + 1603

More generally, a vector of linear combinations of the elements of
Y can be written in the form A’Y for a matrix A of coefficients. The
expected value and variance-covariance matrix of A’Y is:

EAY)=AEY)=Au and V=AVA

Example. This time suppose

I+,
U—{Yl_YZ]—AY
where
1 1
a=[1 4]
Then
1 1 1 M1+ o
EU)=FEAY)=Au= —
) ( ) s [1 —1]{,“2] [Ml—m

and the variance-covariance matriz of A'Y is:
_ar r 1 1 O'% 012 1 1
VU_AVA_L —1Ha12 o3 |1 -1

o O'%—l-alg O'12+0'% 1 1
o J%—Ulg 012—03 1 -1

2 2

2 2 2 2
_ | 01+ 2012+ 03 201—02 ,
o] — 0; o] — 2012 + 035

B Var(Y: +Y3) Cov(Y1 + Y2, Y] — Y3)
| Cov(Y1 + Ve, Y1 — Y3) Var(Y: —Y3)



From this result we see that, for example,

Cov(Y] + Yy, Y1 = Yy) = 07 — 03 = Var(Yy) — Var(Ys)

4. THE MULTIVARIATE NORMAL DISTRIBUTION

If Y has a univariate normal distribution N(u, o), the density func-

tion of Y is:
Y
Fy) = ——exp (—1M)

- V2ro 2 o
If
Y1
yo|
Y,

has a multivariate normal distribution with mean vector
2

p=1.
Hn

and nonsingular variance-covariance matrix

2
0y O12 -+ Oin
2
012 05 =+ O2p
V= ]
2
Oin O2n - Oy

then the joint density function of Y is:
o 1 1 /Vfl
f(yhy%---ayn)_mexp —5(1’—M) (v —p)

Note that if all covariances are zero,

1
O'% U%
o2 1
2 _ o2
V= ' and V7 !l= :
o? 12



Because the determinant of a diagonal matrix is simply the product of
the entries on the diagonal, |V'|*/? reduces to:

\/ ’H?:N?’ =1II_,0;

and the exponent reduces to:

1 - n (yz - Mz‘)2
—Sly =)'V Ny — ) = T

so the joint density function factors into the product

1 1 (yi — i)’
cyn) = T 2
f(yla Y ) i=1 /_27TO'Z' exXp ( 2 0_22

which is just the product of the n univariate densities for the individ-
ual Y;. This establishes that having all covariances equal to zero is
a sufficient condition for the components Y; of a multivariate normal
random vector Y to be independently distributed. This is not true for
an arbitrary distribution.

5. DISTRIBUTION OF QUADRATIC FORMS

Suppose Y has a multivariate normal distribution with mean vector
p and variance-covariance matrix V. Very often we are interested in
quadratic functions of the Y;. As it turns out, these can be represented
as quadratic forms, that is, expressions of the form

Y'AY

for some matrix A. The following very general theorem gives neces-
sary and sufficient conditions for a quadratic form to have a chi-square
(denoted x?) distribution:

Theorem (Distribution of a Quadratic Form). If Y has a multivari-
ate normal distribution with mean vector i and nonsingular variance-
covariance matriz 'V, and A is an arbitrary matriz, the quadratic form

Y'AY

has a x* distribution with degrees of freedom equal to the rank of A if
and only if AV s idempotent.

Note: If = 0, that is, the vector of means is zero, then Y’AY has
a central x? distribution, which is the one tabulated in the back of the
text. Otherwise, Y’AY has what is called a noncentral x? distribution.
Many standard hypothesis testing procedures make use of test statistic



that has a central x? distribution when a certain hypothesis is true,
and a noncentral y? distribution otherwise.

Example. Suppose Z;, 1 = 1,--- ,n is a collection if IID (independent,
identically distributed) random variables having a standard normal dis-
tribution N(0,1). Then the vector Z = (Zu, ..., Zy,) has a multivariate
normal distribution with V- = I. Consider the sum of squares:

i 72 =Y'lY
i=1

In this case, the matriz A of the quadratic form is A= 1, so AV = I?
and (AV)? =T1* =1 = AV. Since AV is idempotent and Rank(A) =
n, the sum of the squares of the Z; has a x? distribution with n degrees
of freedom.

Example. Now suppose the Z; are IID N(0,0), soV = ¢*I. We want
to consider the distribution of

1 — —
= Y;i—-Y)?
=1

As we have seen,

can be written as

n

frea(E)

=1

which can be written as a quadratic form

Y’ ([—lJ)Y
n

where J is a matriz with every entry equal to 1:

11 1
11 1
J = )



and J? is a matriz with every entry equal to n:

n n “ e n
2 n n “ e n
Jo=1 . . . = nJ
n n « e . n
so if
1 1 9
A:—2 I ——J and V =o0°1
o n
then

1 1.\
AV =T—=J and (AV)Q:(I——J)
n mn

1 1 2 1
= (I——J) (I——J) =rrP-=J-=J
n n n n

but I? = I, and J* = nJ so this becomes
1
n?

(AV)Q:IQ—EJ— Per-Zrptyor- Loy

n n n n
If you add the first n—1 columns of the matriz I —1/nJ, you obtain the
last row. In fact, it can be shown that the rank of this idempotent matrix
isn—1, so the quadratic form Y'AY has a chi-square distribution with
n — 1 degrees of freedom.

The appearance of n — 1 in formulas for the sample standard devia-
tion is one of the more mysterious aspects of an introductory statistics
course, but considering the above example it should be clear that the
n — 1 factor arises from the rank of a matrizx.



