MIDTERM STUDY GUIDE

1. Definitions

You should be familiar with the following definitions:
Definition (combination). The number of unordered subsets of size r from a set of n elements:

$$
C_{r}^{n}=\frac{n!}{r!(n-r)!}
$$

Definition (compliment). The compliment of a set A is the set of all elements that do not belong to A :

$$
A^{c}=\{x: x \notin A\}
$$

Definition (conditional probability). The conditional probability $P(A \mid B)$ of an event A given B is:

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

Definition (countable set). A countable set is a set that can be put in 1-1 correspondence with the set of natural numbers \mathbb{N}.

Definition (cumulative distribution function). The cumulative distribution function (CDF) $F(x)$ of a random variable X is defined as:

$$
F(x)=P(X \leq x)
$$

Definition (DeMorgan laws). If A and B are sets,

$$
(A \cup B)^{c}=A^{c} \cap B^{c} \quad \text { and } \quad(A \cap B)^{c}=A^{c} \cup B^{c}
$$

Definition (discrete probability space). A discrete probability space is a probability space whose sample space Ω is finite or countably infinite.
Definition (event space). The event space \mathcal{F} of an experiment is the collection of subsets of Ω that will be considered to be events.

Definition (expected value). The expected value $E(X)$ of a random variable X is defined as:
$E(X)=\sum x \cdot p(x)$ if X is discrete or $\int x \cdot f(x) d x$ if X is continuous

Definition (expected value of a function). The the expected value $E(f(X))$ of a function of a random variable X is defined as:
$E(f(X))=\sum f(x) \cdot p(x)$ if X is discrete or $\int f(x) \cdot f(x) d x$ if X is continuous
Definition (experiment). A process by which an observation is made.
Definition (independent events). Two events A and B are independent if any of the following are true:

$$
P(A \mid B)=P(A) \quad \text { or } \quad P(B \mid A)=B \quad \text { or } \quad P(A \cap B)=P(A) \cdot P(B)
$$

Definition (Kolmogorov axioms). The Kologorov axioms are a set of three rules for assigning probabilities to events:

- $P(E) \geq 0$ for any $E \subseteq \Omega$
- $P(\Omega)=1$
- If $\left(P_{i}\right)$ is a collection of disjoint events,

$$
P\left(A_{1} \cup A_{2} \cup A_{3} \cdots\right)=\sum_{i=1}^{\infty} P\left(A_{i}\right)
$$

Definition (kth moment). The kth moment of a random variable X is defined as:

$$
\mu_{k}^{\prime}=E\left(X^{k}\right)
$$

Definition (kth moment about the mean). The kth moment about the mean of a random variable X is defined as:

$$
\mu_{k}=E\left[(X-\mu)^{k}\right]
$$

Definition (m times n rule). If set A has m elements and set B has n elements, there are $m \cdot n$ sets consisting of a signle element from A and a single element from B.

Definition (moment generating function). The moment generating function of a random variable X is defined as:

$$
m(t)=E\left(e^{t x}\right)
$$

Definition (outcome). The result of performing an experiment. Every time an experiment is performed, the result is exactly one outcome or sample point.

Definition (partition). A partition P of a set S is a collection of disjoint subsets $\left\{B_{i}\right\}$ whose union is S.

Definition (permutation). The number of ordered subsets of size r from a set of n elements:

$$
P_{r}^{n}=\frac{n!}{(n-r)!}
$$

Definition (pth quantile). The $p^{\text {th }}$ quantile ϕ_{p} of a random variable X is defined as then mumber ϕ_{p} with the property:

$$
P\left(X \leq \phi_{p}\right)=p
$$

Definition (power set). The power set \mathcal{P} of a set S is the collection of all possible subsets of S.

Definition (probability density function). The probability density function (PDF) $f(x)$ of a continuous random variable X is the derivative of the cumulative distribution function of X.

Definition (probability mass function). The probability mass function p of a discrete random variable X maps the values of the random variable into the probability that the random variable takes that value:

$$
p(x)=P(X=x)
$$

Definition (probability measure). A probability measure ρ is a function that maps the event space \mathcal{F} of an experiment into $[0,1]$:

$$
\rho: \mathcal{F} \rightarrow[0,1]
$$

Definition (probability space). A probability space is a triple ($\Omega, \mathcal{F}, \rho)$ consisting of:

- A sample space Ω
- An event space \mathcal{F} defined on Ω
- A probability measure ρ defined on \mathcal{F}

Definition (random sample). A random sample is a subset of a population chosen in a way that gives every possible subset an equal chance of being chosen.

Definition (random variable). A random variable X is a real-valued function whose domain is a sample space Ω :

$$
X: \Omega \rightarrow \mathbb{R}
$$

Definition (sample space). The sample space Ω of an experiment is the set of all possible outcomes or sample points of an experiment.

Definition (simple event). A simple event is an event that consists of a single outcome or sample point.

Definition (standard deviation). The standard deviation σ of a random variable X is the square root of $V(X)$.

Definition (uncountable set). An uncountable set is a set that cannot be put in 1-1 correspondence with the set of natural numbers \mathbb{N}.

Definition (variance). The variance $V(X)$ of a random variable X is defined as:

$$
V(X)=E[X-E(X)]^{2}
$$

2. Theorems

You should be familiar with the following theorems and know how to apply them.

Theorem (additive law of probability). If A and B are events,

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

Theorem (multiplicative law of probability). If A and B are events,

$$
P(A \cap B)=P(B \mid A) \cdot P(A)=P(A \mid B) \cdot P(B)
$$

Theorem (multiplicative law of probability - independent events). If A and B are independent events,

$$
P(A \cap B)=P(A) \cdot P(B)
$$

Theorem (probability of a compliment). If A is an event and A^{c} is its compliment,

$$
P(A)=1-P\left(A^{c}\right)
$$

Theorem (Markov's theorem). If X is a random variable with finite expectation $E(X)$, then

$$
P(|X| \geq a) \leq \frac{E(|X|)}{a} \quad \text { for any } a>0
$$

Theorem (Markov's theorem - generalized version). If X is a random variable with finite expectation $E(X)$ and h is a nonnegative real valued function, then

$$
P(h(X) \geq a) \leq \frac{E(h(X))}{a} \quad \text { for any } a>0
$$

Theorem (Chebychev's theorem). If X is a random variable with $E(X)=\mu$ and finite variance σ^{2}, then

$$
P(|X-\mu| \geq k \sigma) \leq \frac{1}{k^{2}} \quad \text { for any } k>0
$$

Theorem (law of total probability). If $P=\left\{B_{1}, B_{2}, \ldots, B_{n}\right\}$ is partition of a sample space Ω with $P\left(B_{i}\right)>0$ for each i and A is an arbitrary event,

$$
P(A)=\sum_{i=1}^{n} P\left(A \mid B_{i}\right) \cdot P\left(B_{i}\right)
$$

Theorem (Baye's rule). If $P=\left\{B_{1}, B_{2}, \ldots, B_{n}\right\}$ is partition of a sample space Ω with $P\left(B_{i}\right)>0$ for each i and A is an arbitrary event,

$$
P\left(B_{j} \mid A\right)=\frac{P\left(A \mid B_{j}\right) \cdot P\left(B_{j}\right)}{\sum_{i=1}^{n} P\left(A \mid B_{i}\right) \cdot P\left(B_{i}\right)}
$$

Theorem (moment generating function theorem). If $m(t)$ is the moment generating function of a random variable X, then the $k^{\text {th }}$ moment μ_{x}^{\prime} of X is

$$
\mu_{k}^{\prime}=\left.\frac{d^{k} m(t)}{d t^{k}}\right|_{t=0}
$$

Theorem (moment generating function of a sum). If X and Y are independent random variables with respective moment generating functions $m_{x}(t)$ and $m_{y}(t)$, then the moment generating function of the random variable $X+Y$ is

$$
m_{x+y}(t)=m_{x}(t) \cdot m_{y}(t)
$$

3. Distributions

A copy of the information inside the back cover of the text on continuous distributions and discrete distributions will be provided.

You should be familiar with the following distributions:
3.1. Bernoulli distribution. The Bernoulli distribution arises from an experiment with two outcomes:

- Success S with probability p
- Failure F with probability $1-p$

The random variable that maps the outcome S to 1 and F to 0 is said to have a Bernoulli distribution.
3.2. Binomial distribution. A binomial random variable arises as a sum of a predetermined number n of independent Bernoulli random variables each with probability of success p.
3.3. Geometric distribution. A geometric random variable arises if we conduct independent Bernoulli trials each with probability p until the first success is obtained. The random variable may be defined as either the number of trials Y that this takes (Wackerly text definition) or the number of failures X that precede the first success (R or actuarial exam).
3.4. Negative binomial distribution. A negative binomial random variable arises if we conduct independent Bernoulli trials each with probability p until r successes are obtained. The random variable may be defined as either the number of trials Y that this takes (Wackerly text definition) or the number of failures X that precede the $r^{\text {th }}$ success (R or actuarial exam).
3.5. Poisson distribution. The Poisson distribution arises as a limit of the binomial distribution as $n \rightarrow \infty$ while the expected number of successes $n p=\lambda$ is held constant.
3.6. Hypergeometric distribution. A hypergeometric distribution models the experiment of drawing n chips from an urn containing N chips of which r are red and $N-r$ are black. The random variable is the number of red chips drawn.
3.7. Uniform distribution. The uniform distribution arises from the experiment of selecting a number at random from the interval $(0,1)$ or, more generally, from $\left(\theta_{1}, \theta_{2}\right)$ with $\theta_{2}>\theta_{1}$ (It makes no difference whether we consider the endpoints to be included or not).
3.8. Normal distribution. The normal distribution is the limiting distribution of a sum of independent random variables as the number of variables increases without bound.
3.9. Exponential distribution. The exponential distribution is commonly used to model time to failure of a component or time to some arbitrary event.
3.10. Gamma distribution. The gamma distribution can be thought of as a generalization of the exponential.
3.11. Chi-square distribution. The chi-square distribution is a special case of the gamma distribution. The square of a standard normal random variable has a chi-square distribution.
3.12. Beta distribution. The beta distribution is something like a continuous version of the binomial. It is very flexible and often used in Bayesian statistics to describe the distribution of a parameter.

