1. Written Assignment 1

The coin toss experiment has two outcomes, H and T. In the following problems, the experiment consists of repeating the coin toss three times.

The assignment is to construct a probability space $S=(\Omega, \mathcal{F}, \rho)$ that represents the experiment, and to define a random variable X on it.
1.1. Problem 1. What is the sample space Ω for this experiment?
1.2. Problem 2. Define a set of events \mathcal{F}. You can define this in many ways, but the logical choice would be something similar to what we did in class. At the very least \mathcal{F} should include Ω itself and each outcome contained in Ω.
1.3. Problem 3. For your choice of \mathcal{F}, define a probability measure, that is, a function

$$
\rho: \mathcal{F} \rightarrow[0,1]
$$

that is consistent with the Kolmogorov axioms.
1.4. Problem 4. Define a random variable on Ω, that is, a function

$$
X: \Omega \rightarrow \mathbb{R}
$$

There are many ways to do this. You should express X as a table of ordered pairs, the first being an element of Ω and the second a real number of your choosing.
1.5. Problem 5. State the value of the probability that X assumes each value in its range in this probability space $S=(\Omega, \mathcal{F}, \rho)$, that is,

$$
P(X=x) \quad \text { for each } \quad x \in X[\Omega]
$$

where $X[\Omega]$ represents the image of Ω under the function X (which is just a precise way of saying all of the values that your random variable can assume).

