1. MTH395 Midterm

1.1. Problem 1. A function ϕ is convex on the interval (a, b) if for any $x, y \in(a, b)$ and any $\lambda \in(0,1)$,

$$
\phi[\lambda x+(1-\lambda) y] \leq \lambda \phi(x)+(1-\lambda) \phi(y)
$$

If ϕ is convex on an interval (a, b) and Y is a random variable that assumes only two values $y_{1}, y_{2} \in(a, b)$, neither of which has probability zero, show that

$$
\phi[E(Y)] \leq E[\phi(Y)]
$$

1.2. Problem 2. Suppose (S, Σ, μ) is a probability triple associated with an experiment with $S=\{0,1,2,3, \ldots\}$ and Y is a random variable defined on that triple. Show that

$$
E(Y)=\sum_{y}[1-F(y)]
$$

where $F(y)=P(Y \leq y)$ is the cumulative distribution function of Y.
1.3. Problem 3. The correlation between two random variables X and Y is defined as:

$$
\rho=\frac{\sigma_{X Y}}{\sigma_{X} \sigma_{Y}}
$$

Show that if Y_{1} and Y_{2} are identically distributed (i.e., have the same marginal distribution) then the correlation between $Y_{1}+Y_{2}$ and $Y_{1}-Y_{2}$ is zero.
1.4. Problem 4. An operator A is said to be idempotent if $A(A(x))=$ $A(x)$. Show that expected value is idempotent in the sense that if Y is a random variable and $E(Y)$ exists, then

$$
E[E(Y)]=E(Y)
$$

1.5. Problem 5. If Y is a random vector

$$
Y=\left[\begin{array}{l}
Y_{1} \\
Y_{2}
\end{array}\right]
$$

with joint moment-generating function $M\left(t_{1}, t_{2}\right)$, the moment-generating function of the random variable $X=Y_{1}+Y_{2}$ is $M(t, t)$. Suppose Y_{1} and Y_{2} have joint density function

$$
f(x, y)=e^{-y_{1}-y_{2}}, \quad 0<y_{1}, y_{2}<\infty
$$

Find:
a) The joint moment-generating function $M\left(t_{1}, t_{2}\right)$ of Y_{1} and Y_{2}
b) The moment-generating functions of the marginal distributions of Y_{1} and Y_{2}, and identify the marginal distributions.
c) The moment-generating function of the sum $Z=Y_{1}+Y_{2}$.
1.6. Problem 6. Show that if X is a discrete random variable and $\operatorname{Var}(X)=0$ then there exists an $a \in \mathbb{R}$ such that $P(X=a)=1$
1.7. Problem 7. Show that for any random discrete random variables X and Y

$$
E\left[(X Y)^{2}\right] \leq E\left(X^{2}\right) \cdot E\left(Y^{2}\right)
$$

with equality if and only if $P(a X=b Y)=1$ for some $a, b \in \mathbb{R}$ with a and b not both zero. (Hint: consider the random variable $Z=a X-b Y$ and use the results of problem 6)
1.8. Problem 8. Let X and Y be independently distriuted Poisson random variables with parameters λ and μ, respectively. Show that:
a) $Z=X+Y$ has a Poisson distribution with mean $\lambda+\mu$
b) The conditional distribution of X, given $X+Y=n$ has a binomial distribution
c) Find the parameters of the binomial distribution in part b).

