## 1. Assignment 6

1.1. Problem 1. If $X$ and $Y$ are random variables, the covariance of $X$ and $Y$, denoted by $\sigma_{X Y}$ or $\operatorname{Cov}(X, Y)$ is defined as:

$$
\sigma_{X Y}=\operatorname{Cov}(X, Y)=E(X Y)-E(X) \cdot E(Y)
$$

where $E(X Y)$ is defined as:

$$
E(X Y)=\sum_{x} \sum_{y} x y \cdot P(X=x \text { and } Y=y)
$$

In a binomial experiment with four trials and probability of success $p$, let $Y$ be the number of successes and $X$ be the number of failures.
a) What are the values of $E(X)$ and $E(Y)$ ?
b) What is $E(X Y)$ ?
c) What is $\operatorname{Cov}(X, Y)$ ?
1.2. Problem 2. Suppose $(S, \Sigma, \mu)$ is a probability triple associated with an experiment and $Y$ is a random variable defined on that triple. Show that if we conduct two replications of the experiment in such a way that

$$
P\left(Y_{1}=y_{1} \text { and } Y_{2}=y_{2}\right)=P\left(Y=y_{1}\right) \cdot P\left(Y=y_{2}\right)
$$

where $Y_{1}$ and $Y_{2}$ are the values of the random variable $Y$ associated with the first and second replications, then

$$
\operatorname{Cov}\left(Y_{1}, Y_{2}\right)=0
$$

1.3. Problem 3. Recall that the cumulative distribution function of a random variable $Y$ is defined as:

$$
F(y)=P(Y \leq y)
$$

Suppose a random variable $Y$ associated with an experiment has probability function $p(y)$ and cumulative distribution function $F(y)$. If five independent replications of the experiment are performed, find the cumulative distribution function of the median of the five $Y$ values, that is, the third value in the list if the $Y$ values are ordered from largest to smallest. (hint: pick a value $y_{0}$ and divide the range of $Y$ into "successes" where $Y_{i}>y_{0}$ and "failures" where $Y_{i} \leq y_{0}$, and try to define the event "the median is less than or equal to $y_{0}$ in terms of successes and failures).
1.4. Problem 4. Let $(S, \Sigma, \mu)$ be a probability triple and $A, B \in \Sigma$. Define a random variable

$$
I_{A}: S \rightarrow \mathbb{R}
$$

by:

$$
I_{A}(s)=\left\{\begin{array}{lll}
1 & \text { if } & s \in A \\
0 & \text { if } & s \notin A
\end{array}\right.
$$

and a random vaiable $I_{B}: S \rightarrow \mathbb{R}$ :

$$
I_{B}: S \rightarrow \mathbb{R}
$$

by:

$$
I_{B}(s)=\left\{\begin{array}{lll}
1 & \text { if } & s \in B \\
0 & \text { if } & s \notin B
\end{array}\right.
$$

In terms of elements of $\Sigma$ and their associated pobability measures,
a) How would you interpret $E\left(I_{A}\right)$ ?
b) How would you intepret $E\left(I_{A} \cdot I_{B}\right)$ ?
c) How would you intepret $E\left(1-I_{A}\right)$ ?
d) How would you intepret $E\left[\left(1-I_{A}\right)\left(1-I_{B}\right)\right]$ ?

