1. ASSIGNMENT 1

1.1. Problem 1. Recall that if A and B are equivalent sets they have the same cardinality, $n(A)=n(B)$. George Cantor extended this concept to infinite sets by defining A and B to be equivalent if there exists a one-to-one correspondence $f: A \rightarrow B$. Use Cantor's definition to show that if

$$
A=\mathbb{N}=\{1,2,3,4, \ldots\}
$$

and

$$
B=\{2,4,6,8, \ldots\}
$$

then $A \sim B$, that is, A and B have the same number of elements.
1.2. Problem 2. Dirichlet's function $f: \mathbb{R} \rightarrow\{0,1\}$ is defined by

$$
f(x)=\left\{\begin{array}{lll}
1 & \text { if } & x \in \mathbb{Q}(x \text { is rational }) \\
0 & \text { if } & x \notin \mathbb{Q}(x \text { is irrational })
\end{array}\right.
$$

a) Find $f^{-1}[\{1\}]$
b) Find $f[\mathbb{R} \backslash \mathbb{Q}]$
1.3. Problem 3. Suppose $f: \mathbb{R} \backslash\{-2,2\} \rightarrow \mathbb{R}$ is defined by

$$
f(x)=\frac{1}{x^{2}-4}
$$

a) Find the range $f[\mathbb{R} \backslash\{-2,2\}]$
b) Find the image of $(2, \infty), f[(2, \infty)]$
c) Find the inverse image of $\{y \mid 1 \leq y \leq 3\}$ or $f^{-1}[[1,3]]$
d) Find the inverse image of $\left(-\infty,-\frac{1}{4}\right]$
1.4. Problem 4. Recall from the class notes that if $f: A \rightarrow B$ is a function and $E, G \subseteq A$,

$$
f[E \cap G] \subseteq f[E] \cap f[G]
$$

Find an example of a function $f: A \rightarrow B$ and two subsets E and G of its domain for which

$$
f[E \cap G] \quad \text { is a proper subset of } \quad f[E] \cap f[G]
$$

