MTH362 Spring 2012

Table of Contents

Contents

Table of Contents	3
	0
Chapter 1. Preliminaries and Definitions	1
Chapter 2. Euclidean Spaces \mathbb{R}^n	5
2.1. Algebraic Structure	6
2.2. The Usual Topology of \mathbb{R}^n	16
Chapter 3. Convergence in \mathbb{R}^n	21
3.1. Limits of Sequences	22
3.2. The Heine-Borel Theorem	29
3.3. Limits of Functions	31
Chapter 4. Metric Spaces	35
4.1. Introduction	36
4.2. Cluster Points and Limits	42
4.3. Compactness	43
4.4. Function Algebras and the Stone-Weierstrass Theorem	45

CHAPTER 1

Preliminaries and Definitions

DEFINITION 1.0.1 (binary operation). A binary operation on a set S is a function from $S \times S$ into S.

Examples of binary operations:

- $+: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ Addition of natural numbers
- $\cdot : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ Multiplication of natural numbers

DEFINITION 1.0.2 (group). A group consists of:

- $A \ set \ G$
- A binary operation $+: G \times G \rightarrow G$ with the following properties:

 $\begin{array}{l} x+(y+z)=(x+y)+z\;\forall x,y,z\in G \qquad (associativity)\\ \exists 0\in G \;\; such\; that\; a+0=0+a=a\;\forall a\in G \qquad (identity)\\ \forall a\in G\;\exists\; a^{-1}\;\; such\; that\;\; a+a^{-1}=a^{-1}+a=0 \quad (inverse) \end{array}$

DEFINITION 1.0.3 (field). A *field* consists of:

- $A \ set \ F$
- A binary operation $+: F \times F \to F$ with the following properties:

 $\begin{array}{ll} x+y=y+x \ \forall x,y\in F & (additive \ commutativity) \\ x+(y+z)=(x+y)+z \ \forall x,y,z\in F & (additive \ associativity) \\ \exists 0\in F \ such \ that \ a+0=0+a=a \ \forall a\in F & (additive \ identity) \\ \forall a\in F \ \exists \ a^{-1} \ such \ that \ a+a^{-1}=a^{-1}+a=0 & (additive \ inverse) \\ \bullet \ A \ binary \ operation: F\times F \rightarrow F \ with \ the \ following \ properties: \end{array}$

 $\begin{array}{ll} xy = yx \; \forall x, y \in F & (multiplicative \ commutativity) \\ x(yz) = (xy)z \; \forall x, y, z \in F & (multiplicative \ associativity) \\ \exists 1 \in F \ such \ that \ a1 = 1a = a \; \forall a \in F & (multiplicative \ identity) \\ \forall a \in F \setminus 0 \; \exists \ a^{-1} \ such \ that \ aa^{-1} = a^{-1}a = 1 & (multiplicative \ inverse) \\ x(y+z) = xy + xz \quad \forall x, y, z \in F & (distributive \ property) \end{array}$

DEFINITION 1.0.4 (vector space). A vector space or linear space consists of:

- A field F of elements called scalars
- A commutative group V of elements called **vectors** with respect to a binary operation +

- A binary operation: $F \times V \to V$ called scalar multiplication that associates with each scalar $\alpha \in F$ and vector $v \in V$ a vector αv in such a way that:
 - $1v = v \quad \forall v \in V$ $(\alpha\beta)v = \alpha(\beta v) \quad \forall \alpha, \beta \in F, v \in V$ $\alpha(v+w) = \alpha v + \alpha w \quad \forall \alpha \in F, v, w \in V$ $(\alpha+\beta)v = \alpha v + \beta v \quad \forall \alpha, \beta \in F, v \in V$

DEFINITION 1.0.5 (norm). A nonnegative real-valued function $|| || : V \to \mathbb{R}$ is called a **norm** if:

- $||v|| \ge 0$ and $||v|| = 0 \Leftrightarrow v = \vec{0}$
- $||v + w|| \le ||v|| + ||w||$ (triangle inequality)
- $\|\alpha v\| = |\alpha| \|x\| \quad \forall \alpha \in F, \ v \in V$

DEFINITION 1.0.6 (normed linear space). A linear space V together with a norm $\|\cdot\|$, denoted by the pair $(V, \|\cdot\|)$, is called a **normed linear space**

DEFINITION 1.0.7 (inner product). Let the field F be either \mathbb{R} or \mathbb{C} and a set V of vectors which together with F form a vector space. An *inner product* on V is a map

$$\cdot:V\times V\to \mathbb{F}$$

with the following properties:

 $\begin{array}{ll} (u+v)\cdot w = u\cdot w \ + \ v\cdot w & \forall u,v,w \in V \\ (\alpha u)\cdot v = \alpha(u\cdot v) & \forall \alpha \in F, \ u,v \in V \\ u\cdot v = (\overline{v\cdot u}) & \forall u,v \in V \\ u\cdot u \geq 0 & \forall u \in V \ with \ equality \ when \ u = \vec{0} \end{array}$

If the underlying field is \mathbb{R} , the fourth condition can be replaced by

 $u \cdot v = v \cdot u \quad \forall u, v \in V$

since a real number is its own conjugate. In this case, the condition just says the inner product is commutative.

DEFINITION 1.0.8 (metric). A metric on a set S is a function $\rho: S \times S \to \mathbb{R}$ where ρ has the following three properties for any $x, y, z \in S$:

$$\begin{array}{l} \rho(x,y) \geq 0 \quad and \ \rho(x,y) = 0 \Leftrightarrow x = y \\ \rho(x,y) = \rho(y,x) \\ \rho(x,y) \leq \rho(x,z) + \rho(z,y) \end{array}$$

DEFINITION 1.0.9 (metric space). A metric space is a pair $\{S, \rho\}$ where S is a set and ρ is a metric defined on S.

DEFINITION 1.0.10 (topology). A **topology** is a set X and a collection \mathcal{J} of subsets of X having the following properties:

- \emptyset and X are in \mathcal{J}
- The union of any subcollection of elements of $\mathcal J$ belongs to $\mathbb J$
- The intersection of any finite subcollection of $\mathcal J$ belongs to $\mathcal J$

CHAPTER 2

Euclidean Spaces \mathbb{R}^n

2.1. Algebraic Structure

DEFINITION 2.1.1 (Euclidean space). For any natural number n, the n-fold Cartesian product of \mathbb{R} with itself is called a Euclidean space and denoted by the symbol \mathbb{R}^n .

$$\mathbb{R}^n = \{ (x_1, x_2, \dots, x_n) : x_i \in \mathbb{R}, \quad 1 \le i \le n \}$$

DEFINITION 2.1.2 (vector sum in Euclidean space). For any $x, y \in \mathbb{R}^n$, define

$$+: R^n \times \mathbb{R}^n \to \mathbb{R}^n \quad by \quad x+y = (x_1+y_1, x_2+y_2, \dots, x_n+y_n)$$

DEFINITION 2.1.3 (scalar product in Euclidean space). For any $x \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$, define

$$: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n \quad by \quad \alpha x = (\alpha x_1, \alpha x_2, \dots, \alpha x_n)$$

DEFINITION 2.1.4 (inner product in Euclidean space). For any $x, y \in \mathbb{R}^n$, define

$$\cdot : R^n \times \mathbb{R}^n \to \mathbb{R} \quad by \quad x \cdot y = (x_1y_1 + x_2y_2 + \dots + x_ny_n)$$

DEFINITION 2.1.5 (cross product in \mathbb{R}^3). For any $x, y \in \mathbb{R}^3$, define $\times : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}^3$ by $x \times y = (x_2y_3 - x_3y_2, x_3y_1 - x_1y_3, x_1y_2 - x_2y_1)$

DEFINITION 2.1.6 (norms in Euclidean space). For any $x \in \mathbb{R}^n$, define

$$||x||: R^n \to \mathbb{R} \quad by \quad ||x|| = \sqrt{\sum_{i=1}^n |x_i|^2}$$
$$||x||_1: R^n \to \mathbb{R} \quad by \quad ||x||_1 = \sum_{i=1}^n |x_i|$$

$$||x||_{\infty} : \mathbb{R}^n \to \mathbb{R} \quad by \quad ||x||_{\infty} := \max\{|x_1|, |x_2|, \dots, |x_n|\}$$

DEFINITION 2.1.7 (Euclidean distance). For any $x, y \in \mathbb{R}^n$, define $d: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R} \quad by \quad d(x, y) = \|x - y\|$

THEOREM 2.1.1. \mathbb{R}^n is a vector space.

PROOF. Part 1. First we need to show that \mathbb{R}^n with the usual definition of a sum in terms of componentwise addition,

 $x + y = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$

is a commutative group. To show this, we need to show that:

- \mathbb{R}^n contains an identity element $\overrightarrow{0}$ such that $v + \overrightarrow{0} = v$ for all $v \in \mathbb{R}^n$
- \mathbb{R}^n contains an inverse element -v such that $v + (-v) = \overrightarrow{0}$ for all $v \in \mathbb{R}^n$
- Addition in \mathbb{R}^n is associative: u + (v + w) = (u + v) + w
- Addition in \mathbb{R}^n is commutative: u + v = v + u

First, define

$$\overrightarrow{0} = (0, 0, \dots, 0)$$

which is the element of \mathbb{R}^n with every component zero. Then for any $v \in \mathbb{R}^n$,

$$v + \vec{0} = (v_1 + 0, v_2 + 0, \dots, v_n + 0)$$

but for any real number v_j , $v_j + 0 = v_j$, so

$$v + \vec{0} = (v_1 + 0, v_2 + 0, \dots, v_n + 0) = (v_1, v_2, \dots, v_n) = v$$

Next, define

$$-v = (-v_1, -v_2, \ldots, -v_n)$$

Then for any $v \in \mathbb{R}^n$,

$$v+(-v) = (v_1+(-v_1), v_2+(-v_2), \dots, v_n+(-v_n)) = (0, \dots, 0) = \overline{0}$$

Now, establish that addition is associative. Let $u, v, w \in \mathbb{R}^n$. Then

$$u + (v + w) = (u_1 + (v_1 + w_1), u_2 + (v_2 + w_2), \dots, u_n + (v_n + w_n))$$

because addition in \mathbb{R} is associative, we can write this as

$$u + (v + w) = ((u_1 + v_1) + w_1, (u_2 + v_2) + w_2, \dots, (u_n + v_n) + w_n)) = (u + v) + w_n$$

This establishes that \mathbb{R}^n is a group. However, we need it to be a commutative group, so we have to show that for any $u, v \in \mathbb{R}^n$,

$$u + v = v + u$$

By definition,

$$u + v = u_1 + v_1, u_2 + v_2, \dots, u_n + v_n$$

Because addition in \mathbb{R} is commutative, we can write

$$u+v = (u_1+v_1, u_2+v_2, \dots, u_n+v_n) = (v_1+u_1, v_2+u_2, \dots, v_n+u_n)$$
$$= v+u$$

For the field component, we will use \mathbb{R} , omitting the proof that \mathbb{R} is a field.

Finally, we have to define multiplication of a vector by a scalar, which has to satisfy:

 $\begin{array}{ll} 1v = v & \forall v \in V \\ (\alpha\beta)v = \alpha(\beta v) & \forall \alpha, \beta \in F, \ v \in V \\ \alpha(v+w) = \alpha v + \alpha w & \forall \alpha \in F, \ v, w \in V \\ (\alpha+\beta)v = \alpha v + \beta v & \forall \alpha, \beta \in F, \ v \in V \end{array}$ For any scalar α and vec-

tor v, define

$$\alpha v = (\alpha v_1, \alpha v_2, \dots, \alpha v_n)$$

Then if 1 is the unit element of the field of scalars,

$$1v = (1v_1, 1v_2, \dots, 1v_n) = (v_1, \dots, v_n) = v$$

If $\alpha, \beta \in \mathbb{R}$ and $v \in \mathbb{R}^n$, then

$$(\alpha\beta)v = (\alpha\beta v_1, \alpha\beta v_2, \dots, \alpha\beta v_n)$$
$$= (\alpha(\beta v_1), \alpha(\beta v_2), \dots, \alpha(\beta v_n)) = \alpha(\beta v)$$

If $\alpha \in \mathbb{R}$ and $v, w \in \mathbb{R}^n$, then

$$\alpha(v+w) = \alpha(v_1+w_1, v_2+2_2, \dots, v_n+w_n)$$

= $(\alpha v_1 + \alpha w_1, \alpha v_2 + \alpha w_2, \dots, \alpha v_n + \alpha w_n)$
= $(\alpha v_1, \dots, \alpha v_n) + (\alpha w_1, \dots, \alpha w_n) = \alpha v + \alpha w$

Finally, if $\alpha, \beta \in \mathbb{R}$ and $v \in \mathbb{R}^n$, then

$$(\alpha + \beta)v + = (\alpha + \beta)v_1, (\alpha + \beta)v_2, \dots, (\alpha + \beta)v_n)$$

= $(\alpha v_1 + \dots, \alpha v_n) + \beta(v_1 + \dots + \beta v_n) = \alpha v + \beta v_n$

THEOREM 2.1.2. " · " is an inner product.

PROOF. We need to show that the dot product on \mathbb{R}^n defined by

 $x \cdot y = x_1 y_1 + x_2 y_2 + \dots + x_n y_n$

is an inner product.

First we need to show that for $u, v, w \in \mathbb{R}^n$,

$$(u+v)\cdot w = u\cdot w + v\cdot w$$

By the definition of vector addition in \mathbb{R}^n ,

$$u + v = (u_1 + v_1, u_2 + v_2, \dots, u_n + v_n)$$

so, by the definition of the dot product,

$$(u+v) \cdot w = ((u_1+v_1)w_1 + (u_2+v_2)w_2 + \dots + (u_n+v_n)w_n)$$

= $((u_1w_1+v_1w_1) + (u_2w_2+v_2w_2) + \dots + (u_nw_n+v_nw_n)$
= $((u_1w_1+v_1w_1) + (u_2w_2+v_2w_2) + \dots + (u_nw_n+v_nw_n))$
= $u \cdot w + v \cdot w$

Next, we need to show that for $u, v \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$,

$$(\alpha u) \cdot v = \alpha(u \cdot v)$$

= $(\alpha u_1, \alpha u_2, \dots, \alpha u_n) \cdot (v_1, v_2, \dots, v_n)$
= $(\alpha u_1 v_1 + \alpha u_2 v_2 + \dots + \alpha u_n v_n)$
= $\alpha(u_1 v_1 + u_2 v_2 + \dots + u_n v_n) = \alpha(u \cdot v)$

Next, we need to show that for $u, v \in \mathbb{R}^n$,

$$u \cdot v = v \cdot u$$

$$u \cdot v = (u_1v_1 + u_2v_2 + \dots + u_nv_n)$$

by the commutativity of real multiplication, we can write this as

$$= (v_1u_1 + v_2u_2 + \dots + v_nu_n) = v \cdot u$$

Finally, we need to show that for $u \in \mathbb{R}^n$,

$$u \ge 0$$
 with equality only when $u = 0$

By definition,

$$u \cdot u = u_1^2 + u_2^2 + cdots + u_n^2$$

which cannot be negative since it is a sum of squared real numbers, all of which are nonnegative.

Furthermore, it can be zero only if $u_1^2 = u_2^2 = \cdots = u_n^2 = 0$ which can only happen if $u_1 = u_2 = \cdots = u_n = 0$, which makes $u = \overrightarrow{0}$. \Box

Theorem 2.1.3. $\|\cdot\|$ is a norm.

PROOF. We need to show that:

- 1. $||x|| \ge 0$ and ||x|| = 0 iff x = 0
- 2. $||x + w|| \le ||x|| + ||w||$
- 3. $\|\alpha x\| = |\alpha| \|x\|, \forall \alpha \in F, x \in X$

Part 1. By definition,

$$||x||^2 = \sum_{i=1}^n x_i^2 \ge 0$$

because each x_i^2 is greater than or equal to zero. since all quantities are nonnegative, taking square roots gives

$$\|x\| \ge 0$$

Next, suppose

$$\|x\|^2 = \sum_{i=1}^n x_i^2 = 0$$

Since all x_i^2 are greater than or equal to zero, we can only have equality if all of the x_i are zero. Finally, suppose $x = \overrightarrow{0}$. Then

$$\|x\|^2 \ = \ sum_{i=1}^n 0^2 \ = \ 0$$

so ||x|| = 0. Part 2. By definition,

$$||x+y||^2 = \sum_{i=1}^n (x_i+y_i)^2 = \sum_{i=1}^n x_i^2 + 2\sum_{i=1}^n x_iy_i + \sum_{i=1}^n y_i^2$$

but

$$\sum_{i=1}^{n} x_i^2 + 2\sum_{i=1}^{n} x_i y_i + \sum_{i=1}^{n} y_i^2 \le \sum_{i=1}^{n} x_i^2 + 2\left|\sum_{i=1}^{n} x_i y_i\right| + \sum_{i=1}^{n} y_i^2$$

By the Cauchy-Schwarz inequality,

$$\sum_{i=1}^{n} x_i^2 + 2\left|\sum_{i=1}^{n} x_i y_i\right| + \sum_{i=1}^{n} y_i^2 \le \sum_{i=1}^{n} x_i^2 + 2\|x\| \|y\| + \sum_{i=1}^{n} y_i^2 = (\|x\| + \|y\|)^2$$

so
$$\|x + y\|^2 \le (\|x\| + \|y\|)^2$$

since all quantities are positive, we can take square roots on both sides to get

$$||x+y|| \leq ||x|| + ||y||$$

Part 3.

$$\begin{aligned} \|\alpha x\| &= \sqrt{|\alpha x_1|^2 + |\alpha x_2|^2 + \ldots + |\alpha x_n|^2} \\ &= \sqrt{\alpha^2 |x_1|^2 + \alpha^2 |x_2|^2 + \ldots + \alpha^2 |x_n|^2} \\ &= \sqrt{\alpha^2 (|x_1|^2 + |x_2|^2 + \ldots + |x_n|^2)} \\ &= \alpha \sqrt{\alpha (|x_1|^2 + |x_2|^2 + \ldots + |x_n|^2)} \\ &= |\alpha| ||x|| \end{aligned}$$

THEOREM 2.1.4. $\|\cdot\|_1$ is a norm.

PROOF. We need to show that the following three statements are true for all $\alpha \in \mathbb{R}$ and $v, w \in \mathbb{R}^n$:

- $||v||_1 \ge 0$ with $|v||_1 = 0 \Leftrightarrow v = \overrightarrow{0}$ $||v + w||_1 \le ||v||_1 + ||w||_1$ $||\alpha v||_1 = |\alpha|||v||_1$

Suppose $v \in \mathbb{R}^n$. Then

$$||v||_1 = |v_1| + |v_2| + \dots + |v_n|$$
 with each $|v_i| \ge 0$

Since each term is greater than or equal to zero, the sum $||v||_1$ must also be greater than or equal to zero.

Now consider

$$||v + w||_1 = |v_1 + w_1| + |v_2 + w_2| + \dots + |v_n + w_n|$$

$$\leq |v_1| + |w_1| + |v_2| + |w_2| + \dots + |v_n| + |w_n| = ||v||_1 + ||w||_1$$
mally,

Fin ılly,

$$\|\alpha v\|_{1} = |\alpha v_{1}| + |\alpha v_{2}| + \dots + |\alpha v_{n}|$$

By the properties of absolute values, this is:

$$= |\alpha||v_1| + |\alpha||v_2| + \dots + |\alpha||v_n| = |\alpha|(|v_1| + \dots + |v_n|) = |\alpha|||v||_1$$

Theorem 2.1.5. $\|\cdot\|_{\infty}$ is a norm.

Theorem 2.1.6. $d(\cdot, \cdot)$ is a metric.

PROOF. By definition, a metric is a function $d:\mathbb{R}^n\times\mathbb{R}^n\to\mathbb{R}$ such that

$$d(x, y) \ge 0 \text{ and } d(x, y) = 0 \Leftrightarrow x = y$$

$$d(x, y) = d(y, x)$$

$$d(x, y) \le d(x, z) + d(z, y)$$

Part 1: $d(x, y) \ge 0$ and $d(x, y) = 0 \Leftrightarrow x = y$.

We know

$$||x_i - y_i|| = \sqrt{|x_i - y_i|^2}$$

This is greater than or equal to zero by the definition of absolute value. So, the sum

$$d(x,y) = ||x_i - y_i|| = \sqrt{|x_1 - y_1| + \dots + |x_n - y_n|}$$

is greater than or equal to zero.

Part 2: d(x,y) = d(y,x)

Suppose not. Then

$$|x_1 - y_1| + \dots + |x_n - y_n| \neq |y_1 - x_1| + \dots + |y_n - x_n|$$

Let $c_1 = x_i - y_i$. Then

$$d(x,y) = |c_1| + |c_2| + \dots + |c_n|$$

and $-c_1 = y_i - x_i$, and by substitution,

$$c_1 | + \dots + |c_n| \neq |-c_1| + \dots + |-c_n|$$

which is a contradiction since $|c_i| = |-c_i|$ for every $i, 1 \le i \le n$. \Box

THEOREM 2.1.7 (Cauchy-Schwarz inequality). For any $x, y \in \mathbb{R}^n$, $|x \cdot y| \le ||x|| ||y||$

Proof.

$$(x - ty) \cdot (x - ty) = ||x - ty|| \ge 0$$

$$x \cdot x - 2tx \cdot y + t^2y \cdot y \ge 0$$

$$||x||^2 - 2t(x \cdot y) + t^2||y||^2 \ge 0$$

Let $t = \frac{(x \cdot y)}{\|y\|^2}$

$$\begin{split} \|x\|^2 - \frac{2(x \cdot y)^2}{\|y\|^2} + \frac{(x \cdot y)^2}{\|y\|^4} \|y\|^2 \ge 0\\ \|x\|^2 - \frac{(x \cdot y)^2}{\|y\|^2} \ge 0\\ \|x\|^2 \ge \frac{(x \cdot y)^2}{\|y\|^2}\\ \|x\|^2 \|y\|^2 \ge (x \cdot y)^2\\ \|x\|\|\|y\| \ge |x \cdot y| \end{split}$$

	_	

THEOREM 2.1.8. For any
$$x \in \mathbb{R}^n$$
,
 $\|x\|_{\infty} \le \|x\| \le \sqrt{n} \|x\|_{\infty}$

PROOF. By definition,

$$||x||_{\infty} = \max(|x_1|, |x_2|, \dots, |x_n|)$$

 \mathbf{SO}

$$||x||_{\infty}^2 = \max(|x_1|^2, |x_2|^2, \dots, |x_n|^2)$$

and

 $||x||^2 = |x_1|^2 + |x_2|^2 + \dots + |x_n|^2 \ge \max(|x_1|^2, |x_2|^2, \dots, |x_n|^2) = ||x||_{\infty}^2$ Since ||x|| and $||x||_{\infty}$ are both nonnegative, we can take square roots of both terms and the inequality still holds:

$$\|x\|_{\infty} \le \|x\|$$

Now consider

$$||x||^{2} = (|x_{1}|^{2} + \dots + |x_{n}|^{2}) \le n \max(|x_{1}^{2} + \dots + |x_{n}|^{2}) = n ||x||_{\infty}^{2}$$

Since all quantities are nonnegative, we can write:

$$||x||^2 \le \sqrt{n} ||x||_{\infty}$$

and so

$$\|x\|_{\infty} \le \|x\| \le \sqrt{n} \|x\|_{\infty}$$

THEOREM 2.1.9. For any $x \in \mathbb{R}^n$, $\|x\| \le \|x\|_1 \le \sqrt{n} \|x\|$

PROOF. Part 1. By definition,

$$||x|| = \sqrt{|x_1|^2 + \dots + |x_n|^2}$$
$$||x||_1 = |x_1| + \dots + |x_n|$$

Squaring each norm:

$$||x||^{2} = \sqrt{|x_{1}|^{2} + \dots + |x_{n}|^{2}}^{2} = |x_{1}|^{2} + \dots + |x_{n}|^{2}$$

 $||x||_1^2 = (|x_1|+\cdots+|x_n|)^2 = |x_1|^2+\cdots+|x_n|^2+2\cdot\sum |x_i||x_j|$ where 1 < i < j < nBy definition of absolute values, we know that $2 \cdot \sum |x_i||x_j|$ will be greater than or equal to 0. Therefore, we can conclude:

$$|x_1|^2 + \dots + |x_n|^2 \le |x_1|^2 + \dots + |x_n|^2 + 2 \cdot \sum |x_i| |x_j|^2$$

Implying that: $||x||^2 \le ||x||_1^2$. Taking the square root: $||x|| \le ||x||_1$

Part 2.

Multiplying the squared Euclidean norm:

$$n ||x||^2 = n\sqrt{|x_1|^2 + \dots + |x_n|^2}^2 = n(|x_1|^2 + \dots + |x_n|^2) = n\sum |x_i|^2 \quad \text{for } i = 1, \dots, n$$

From Part 1, we say the $\ell 1$ norm sequend as:

From Part 1, we say the $\ell 1$ norm squared as:

$$||x||_1^2 = (|x_1| + \dots + |x_n|)^2 = \sum |x_i|^2 + 2 \sum |x_i| |x_j|$$
 where $1 < i < j < n$
Subtracting the two norms:

$$n ||x||^{2} - ||x||_{1} = n \sum |x_{i}|^{2} - \left(\sum |x_{i}|^{2} + 2 \cdot \sum |x_{i}||x_{j}|\right)$$

Combining like-terms:

$$\left(\sum n|x_i|^2 - |x_i|^2\right) + 2 \cdot \sum |x_i||x_j|$$

= $\sum (n-1)|x_i|^2 + 2 \cdot \sum |x_i||x_j| = (n-1) \sum |x_i|^2 + 2 \cdot \sum |x_i||x_j|$
Substituting in $\ell 1$ norm squared:
= $(n-1) ||x||_1^2$

THEOREM 2.1.10. For any
$$x, y \in \mathbb{R}^n$$
,
 $\|x - y\| \ge \|x\| - \|y\|$

PROOF. By definition,

$$||x - y||^2 = \sum_{i=1}^n (x_i - y_i)^2 = \sum_{i=1}^n x_i^2 - 2\sum_{i=1^n} x_i y_i + \sum_{i=1}^n y_i^2$$
$$= \sum_{i=1}^n x_i^2 - 2(x \cdot y) + \sum_{i=1}^n y_i^2$$

Since $|x \cdot y| \ge x \cdot y$,

$$\sum_{i=1}^{n} x_i^2 - 2(x \cdot y) + \sum_{i=1}^{n} y_i^2 \ge \sum_{i=1}^{n} x_i^2 - 2|x \cdot y| + \sum_{i=1}^{n} y_i^2$$

Using the Cauchy-Schwartz inequality, we can write

$$\sum_{i=1}^{n} x_i^2 - 2|x \cdot y| + \sum_{i=1}^{n} y_i^2 \ge \sum_{i=1}^{n} x_i^2 - 2||x|| ||y|| + \sum_{i=1}^{n} y_i^2 = (||x|| - ||y||)^2$$

from which we can write

$$||x - y||^2 \ge (||x|| - ||y||)^2$$

which, since $||x - y|| \ge 0$, implies

$$||x - y|| \ge ||x|| - ||y||$$

2.2. The Usual Topology of \mathbb{R}^n

DEFINITION 2.2.1 (open ball). For any r > 0 and $a \in \mathbb{R}^n$, the open ball centered at a with radius r is the set of points

$$B_r(a) = \{x \in \mathbb{R}^n : ||x - a|| < r\}$$

DEFINITION 2.2.2 (closed ball). For any r > 0 and $a \in \mathbb{R}^n$, the closed ball centered at a with radius r is the set of points

$$B_r(a) = \{x \in \mathbb{R}^n : ||x - a|| \le r\}$$

DEFINITION 2.2.3 (open set). A subset O of \mathbb{R}^n is said to be open if and only if for every $a \in O$, there is an $\epsilon > 0$ such that

$$B_{\epsilon}(a) \subseteq O$$

DEFINITION 2.2.4 (closed set). A subset F of \mathbb{R}^n is said to be closed if and only if

$$F^c = \mathbb{R} \setminus F$$
 is open

that is, if and only if its compliment F^c is open.

DEFINITION 2.2.5 (interior). If E is a subset of \mathbb{R}^n , the interior of E is the set

$$E^{\circ} = \bigcup \{ V : V \subseteq E \quad and \ V \ is \ open \}$$

that is, E° is the union of all open subsets of E.

DEFINITION 2.2.6 (closure). If E is a subset of \mathbb{R}^n , the closure of E is the set

$$\overline{E} = \bigcap \{F : F \supseteq E \text{ and } F \text{ is closed} \}$$

that is, \overline{E} is the intersection of all closed sets that contain E.

DEFINITION 2.2.7 (boundary). If E is a subset of \mathbb{R}^n , the boundary of E is the set

 $\partial E = \{x \in \mathbb{R}^n : \text{ for all } r > 0, \quad B_r(x) \cap E \neq \emptyset \text{ and } B_r(x) \cap E^c \neq \emptyset\}$

THEOREM 2.2.1. Suppose $a \in \mathbb{R}^n$ and r > 0. Let x be and arbitrary element of $B_r(a)$. Then there exists an $\epsilon > 0$ such that

$$B_{\epsilon}(x) \subseteq B_r(a)$$

THEOREM 2.2.2. Suppose $a \in \mathbb{R}^n$. Then the singleton set $\{a\}$ is closed

PROOF. Let F be the Singleton set containing a. The only sequence in F is $\{a, a, a, a, a, a...\}$, the constant sequence where every element is a. Since $\lim_{n\to\infty} k_n = a \in F$, so F contains its limit points. By theorem 3.1.15, F is closed.

THEOREM 2.2.3. The empty set \emptyset is both open and closed.

PROOF. Clearly for any $x \in \mathbb{R}^n$, there exists an $\epsilon > 0$ such that $B_{\epsilon}(x) \subseteq \mathbb{R}^n$, since this statement is true for any $\epsilon > 0$. So \mathbb{R}^n is open. By definition its compliment, the empty set, is closed. Now consider \emptyset . \emptyset contains no elements, so we can say that the condition that every $x \in \emptyset$ is the center of an open ball contained in \emptyset is true vacuously. \Box

THEOREM 2.2.4. Considered as a set, \mathbb{R}^n is both open and closed.

PROOF. We have previously established that the empty set is open, so its compliment \mathbb{R}^n is closed. Furthermore, if $x \in \mathbb{R}^n$, for any $\epsilon > 0$, $B_{\epsilon}(x) \subseteq \mathbb{R}^n$, so \mathbb{R}^n is open. \Box

THEOREM 2.2.5. The collection of open sets as defined above is a topology on \mathbb{R}^n

PROOF. We need to show that the collection of sets \mathcal{T} satisfying the definition of an open set form a topology, that is,

- \mathbb{R}^n and \emptyset are open
- Arbitrary unions of open sets are open
- Finite intersections of open sets are open

From theorems 2.3 and 2.4, \mathbb{R}^n and \emptyset are open. Now suppose $O_{\alpha}, \alpha \in A$ is a collection of open subsets of \mathbb{R}^n indexed by A, and let

$$O = \bigcup_{\alpha \in A} O_{\alpha}$$

Then for each $x \in O$, $x \in O_{\alpha}$ for some $\alpha \in A$. By hypothesis, O_{α} is open, so there is an $\epsilon > 0$ such that

$$B_{\epsilon}(x) \subseteq O_{\alpha}$$

but $O_{\alpha} \subseteq O$, so we have

$$B_{\epsilon}(x) \subseteq O_{\alpha} \subseteq O$$

Since x was arbitrarily chosen, we can find such an ϵ for any $x \in O$, so O is open.

Finally, suppose O_i , $1 \le i \le n$ is a finite collection of open subsets of \mathbb{R}^n , and let

$$E = \bigcap_{i=1}^{n} O_i$$

Suppose $x \in E$. Then $x \in O_i$, for each $1 \leq i \leq n$. Since each O_i is open, there is an ϵ_i for each of them with the property that

$$B_{\epsilon_i}(x) \subseteq O_i$$

Let $\epsilon = \min(\epsilon_1, \epsilon_2, \dots, \epsilon_n)$. Then $B_{\epsilon}(x)$ is contained in each of the O_i ,

$$B_{\epsilon}(x) \subseteq O_i, \quad 1 \le i \le n$$

and therefore $B_{\epsilon}(x) \subseteq E$. Since x was arbitrarily chosen, we can find such an ϵ for any $x \in E$, so by definition E is open.

THEOREM 2.2.6 (8.32i). Suppose
$$E \subseteq \mathbb{R}^n$$
. Then
 $E^{\circ} \subseteq E \subseteq \overline{E}$

PROOF. Part I: $E^o \subseteq E$

Let $x \in E^{\circ}$. We need to show $x \in E$. By definition E° is the union of all open subsets of E. By hypothesis, $x \in E^{\circ}$, so x belongs to at least one open subset of O_x of E. Since $x \in O_x \subseteq E$, then $x \in E$. Because x was arbitrary, every $x \in E^{\circ}$ belongs to E, so $E^{\circ} \subseteq E$. \Box

PROOF. Part II: $E \subseteq \overline{E}$

Now suppose $x \in E$. Let F_{α} be a closed set that contains E. Then $x \in E$ and $E \subseteq F_{\alpha}$ implies $x \in F_{\alpha}$. Since F_{α} was arbitrarily chosen, x belongs to every closed set F that contains E. So x belongs to every closed set that contains E, and therefore to their intersection, \overline{E} . Since x was arbitrary, every element of E belongs to \overline{E} , so $E \subseteq \overline{E}$.

THEOREM 2.2.7 (8.32ii). Suppose $E \subseteq \mathbb{R}^n$, V is open, and $V \subseteq E$. Then

 $V\subseteq E^\circ$

THEOREM 2.2.8 (8.32iii). If $E \subseteq \mathbb{R}^n$, F is closed, and $F \supseteq E$. Then

 $F\supseteq \overline{E}$

PROOF. Let x be an element of \overline{E} . By definition, x belongs to the intersection of all closed sets that contain E. If x belongs to the intersection, it belongs to every set in the intersection, ie, every closed set that contains E. Therefore $x \in F$ since x was arbitrary, every element of \overline{E} is in F and $E \subseteq F$

THEOREM 2.2.9 (8.36). Let
$$E \subseteq \mathbb{R}^n$$
. Then
 $\partial E = \overline{E} \setminus E^{\circ}$

THEOREM 2.2.10 (8.37i). Let $A, B \subseteq \mathbb{R}^n$. Then $(A \cup B)^\circ \supseteq A^\circ \cup B^\circ$

PROOF. Let $x \in A^o \cup B^o$. Then either $x \in O_A \subseteq A$ or $x \in O_B \subseteq B$. In the first case, $O_A \subseteq A \subseteq A \cup B$ so x belongs to an open set contained in $A \cup B$, therefore $x \in (A \cup B)^o$. A similar argument holds for the case of $x \in O_B \subseteq B$.

THEOREM 2.2.11 (8.37i). Let $A, B \subseteq \mathbb{R}^n$. Then $(A \cap B)^\circ = A^\circ \cap B^\circ$

PROOF. Suppose $\in A^{\circ} \cap B^{\circ}$. Then $x \in O_A$ for some $O_A \subseteq A$ and $x \in O_B$ for some $O_B \subseteq B$. Therefore, $x \in O_A \cap O_B$. By the properties of a topology, finite intersections of open sets are open, so $O_A \cap O_B$ is open and in fact is an open set contained in $A \cap B$. So, by definition, $x \in (A \cap B)^{\circ}$.

Now, suppose $x \in (A \cap B)^{\circ}$. Then $x \in O_{A \cap B} \subseteq A \cap B$ by deinition. But $O_{A \cap B} \subseteq A \cap B \subseteq A$, so $x \in O_{A \cap B} \subseteq A$ implies that $x \in A^{\circ}$. A similar argument shows $x \in B^{\circ}$. So $x \in A^{\circ}$ and $x \in B^{\circ}$ implies that $x \in A^{\circ} \cap B^{\circ}$.

THEOREM 2.2.12 (8.37ii). Let
$$A, B \subseteq \mathbb{R}^n$$
. Then
 $\overline{A \cup B} = \overline{A} \cup \overline{B}$

THEOREM 2.2.13 (8.37ii). Let
$$A, B \subseteq \mathbb{R}^n$$
. Then
 $\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$

PROOF. Supposed $x \in \overline{A \cap B}$.

Then x belongs to every closed set that contains $A \cap B$. But $A \cap B \subseteq A$, so every closed set that contains A also contains $A \cap B$. Therefore x is in every closed set that contains A. Further concluding, $x \in \overline{A}$. By similar logic, x belongs to every closed set that contains $A \cap B$. But $A \cap B \subseteq B$, so every closed set that contains B also contains $A \cap B$. Therefore x is in every closed set that contains B. Further concluding, $x \in \overline{B}$. Therefore $x \in \overline{A} \cap \overline{B}$, proving $\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$.

THEOREM 2.2.14 (8.37iii). Let $A, B \subseteq \mathbb{R}^n$. Then $\partial(A + B) \subset \partial A + \partial B$

$$O(A \cup B) \subseteq OA \cup OB$$

THEOREM 2.2.15 (8.37iii). Let $A, B \subseteq \mathbb{R}^n$. Then $\partial(A \cap B) \subseteq \partial A \cap \partial B$

CHAPTER 3

Convergence in \mathbb{R}^n

3.1. Limits of Sequences

DEFINITION 3.1.1 (convergent sequence). Let $\{x_k\}$ be a sequence of points in \mathbb{R}^n . $\{x_n\}$ is said to converge to some point $a \in \mathbb{R}^n$, called the limit of x_k , if and only if for every $\epsilon > 0$, there is an $N \in \mathbb{N}$ such that

 $k \ge N$ implies $||x_k - a|| < \epsilon$

In this case, we write $x_k \to a$ as $k \to \infty$ or $a = \lim_{k \to \infty} x_k$.

DEFINITION 3.1.2 (bounded sequence). Let $\{x_k\}$ be a sequence of points in \mathbb{R}^n . $\{x_n\}$ is said to be bounded if and only if there is an M > 0 such that

$$||x_k|| \le M \quad for \ all \quad k \in \mathbb{N}$$

DEFINITION 3.1.3 (Cauchy sequence). Let $\{x_k\}$ be a sequence of points in \mathbb{R}^n . $\{x_n\}$ is said to be Cauchy if and only if for every $\epsilon > 0$, there is an $N \in \mathbb{N}$ such that

 $k, m \ge N$ imply $||x_k - x_m|| < \epsilon$

DEFINITION 3.1.4 (separable set). $E \subset \mathbb{R}^n$ is said to be separable if, there is an at most countable subset $Z \subseteq E$ such that for every $a \in E$, there is a sequence $\{x_k\} \in Z$ that converges to a.

THEOREM 3.1.1. (9.2) Let $a = (a_1, a_2, \dots, a_n) \in \mathbb{R}^n$ and suppose $\left\{ x_k = \left(x_k^{(1)}, x_k^{(2)}, \dots, x_k^{(n)} \right) \right\}$ $k \in \mathbb{N}$

be a sequence in \mathbb{R}^n . Then

$$x_k \to a \quad as \quad k \to \infty$$

if and only if, for each $j \in \{1, 2, ..., n\}$, the component sequence $x_k^{(j)} \to a_j \quad as \quad k \to \infty$ THEOREM 3.1.2. (9.3) Let

 $\mathbb{Q}^n = \{ x \in \mathbb{R}^n : x_j \in \mathbb{Q} \quad for \quad j = 1, 2, \dots, n \}$ For each $a \in \mathbb{R}^n$, there is a sequence $x_k \in \mathbb{Q}^n$ such that $x_k \to a$ as $k \to \infty$.

PROOF. Let $a \in \mathbb{R}^n = (a_1, a_2, \dots, a_n), a_i \in \mathbb{R}$ There is a sequence $q_k^{(i)}$ in \mathbb{Q} that converges to a_i for $1 \leq i \leq n$. By Theorem 3.1.1, each component sequence $q_k^{(i)} \to a_i$ as $k \to \infty$, so the sequence $q_k \to a$ in \mathbb{R}^n .

THEOREM 3.1.3. \mathbb{R}^n is separable.

THEOREM 3.1.4. (9.4i) A sequence in \mathbb{R}^n can have at most one limit.

THEOREM 3.1.5. (9.4ii) If $\{x_k\}$ is sequence in \mathbb{R}^n that converges to a as $k \to \infty$, then every subsequence $\{x_{k_j}\}$ also converges to a as $j \to \infty$.

PROOF. Let $\epsilon > 0$ be given. By hypothesis, $x_k \to L_x$ and $y_k \to L_y$, so $\exists N \in \mathbb{N}$ such that $||x_k - L_x|| < \frac{\epsilon}{2}$ and $||y_k - L_y|| < \frac{\epsilon}{2}$ when $k \ge N$. But $||(x_k + y_k) - (L_x + L_y)|| = ||(x_k - L_x) + (y_k - L_y)|| \le ||x_k - L_x|| - ||y_k - L_y|| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$ when $k \ge N$.

THEOREM 3.1.6. (9.4*iii*) Every convergent sequence in \mathbb{R}^n is bounded. The converse of this statement is false.

PROOF. If $x_k \to a$, then there exists an $N \in \mathbb{N}$ such that $||x_k - a|| < 1$ for all $k \ge N$. (Note we are theoretically letting $\epsilon = 1$). Now consider $\delta_i = ||x - a||$ for i < i < N - 1. Let $m = \max(\delta_i)$. Then $d(a, x_i) \le m + 1$ for all $i \in \mathbb{N}$. Thus $||a - x_i|| = \delta_i \le m + 1$. But, $||x_i - a|| \ge ||x|| - ||a||$. So, $||x|| - ||a|| \le m + 1 \implies ||x_i|| \le ||a|| + m + 1$.

THEOREM 3.1.7. (9.4iv) Every convergent sequence in \mathbb{R}^n is Cauchy.

PROOF. Suppose x_n is a convergent sequence in \mathbb{R}^n , and let $\epsilon > 0$ be given. By hypothesis, $x_N \to L$ so $\exists N \in \mathbb{N}$ such that $||x_k - L|| < \frac{\epsilon}{2}$ when $k \geq N$.

$$||x_k - L|| < \epsilon$$

$$||x_k - x_N|| < \epsilon$$

$$||x_k - L + L - x_N|| \le ||x_k - L|| + ||L - x_N|| \le \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

THEOREM 3.1.8. (9.4va) If $\{x_k\}$ and $\{y_k\}$ are convergent sequence in \mathbb{R}^n , then

$$\lim_{k \to \infty} (x_k + y_k) = \lim_{k \to \infty} x_k + \lim_{k \to \infty} y_k$$

PROOF. Let $\epsilon > 0$ be given. By hypothesis, $\{x_k\} \to L_x$ and $\{y_k\} \to L_y$, so $\exists N \in \mathbb{N}$ such that $||x_k - L_x|| \leq \frac{\epsilon}{2}$ and $||y_k - L_y|| \leq \frac{\epsilon}{2}$ when $k \geq N$. But then for $k \geq N$,

$$\|(x_k+y_k) - (L_x+L_y)\| = \|(x_k-L_x) + (y_k-L_y)\| \le \|x_k-L_x\| + \|y_k-L_y\| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

when $k \ge N$.

THEOREM 3.1.9. (9.4vb) If $\{x_k\}$ is a convergent sequence in \mathbb{R}^n and $\alpha \in \mathbb{R}$, then

$$\lim_{k\to\infty} (\alpha x_k) \; = \; \alpha \lim_{k\to\infty} x_k$$

PROOF. Let $\epsilon > 0$ be given. We need to find $N \in \mathbb{N}$ such that

$$\|\alpha x_k - \alpha L_x\| < \epsilon \text{ when } k \ge N.$$

By hypothesis, $x_k \to L_x$, so there exists $N \in \mathbb{N}$ such that

$$||x_k - L_x|| < \frac{\epsilon}{|\alpha|}$$
 when $k > N$

Then for k > N,

$$\|\alpha x_k - \alpha L_x\| = |\alpha| \|x_k - L_x\| < |\alpha| \frac{\epsilon}{|\alpha|} = \epsilon$$

THEOREM 3.1.10. (9.4vc) If $\{x_k\}$ and $\{y_k\}$ are convergent sequence in \mathbb{R}^n , then

$$\lim_{k \to \infty} (x_k \cdot y_k) = (\lim_{k \to \infty} x_k) \cdot (\lim_{k \to \infty} y_k)$$

THEOREM 3.1.11. If
$$\{x_k\}$$
 is convergent sequence in \mathbb{R}^n , then

$$\lim_{k \to \infty} ||x_k|| = ||\lim_{k \to \infty} x_k||$$

PROOF. Using the triangle inequality: $||x - y|| \ge ||x|| - ||y||$, we say:

$$||x_n - L|| \ge ||x_n|| - ||L||$$

 $\Rightarrow ||x_n - L|| + ||L|| \ge ||x_n|| \quad \forall n$

Taking the limit:

$$\lim_{n \to \infty} ||x_n - L|| + \lim_{n \to \infty} ||L|| \ge \lim_{n \to \infty} ||x_n||$$

But, $\lim_{n\to\infty} ||x_n - L|| \to 0$, thus:

$$|L|| \ge \lim_{n \to \infty} ||x_n||$$

Reversing, $||L - x_n|| \ge ||L|| - ||x_n||$ $\Rightarrow ||L - x_n|| - ||L|| \ge - ||x_n||$ $\Rightarrow ||L|| - ||L - x_n|| \le ||x_n||$

Taking the limit:

$$\lim_{n \to \infty} ||L|| - \lim_{n \to \infty} ||L - x_n|| \le \lim_{n \to \infty} ||x_n||$$

Once again, $\lim_{n\to\infty} ||L - x_n|| \to 0$, so:

$$||L|| \le \lim_{n \to \infty} ||x_n||$$

Thus:

$$|L|| \le \lim_{n \to \infty} ||x_n|| \le ||L||$$

Concluding:

$$\lim_{n \to \infty} ||x_n|| = ||L|$$

THEOREM 3.1.12 (Bolzano-Weierstrass). (9.6) Every bounded sequence in \mathbb{R}^n has a convergent subsequence.

PROOF. By hypothesis, $\{x_k\}$ is bounded, so there exists an M > 0 such that $||x_k|| \leq M$ for all $k \in \mathbb{N}$.

By Theorem 2.1.8, $|x_{k_j}| \leq max(|x_{k_1}|, |x_{k_2}|, ..., |x_{k_n}|) = ||x||_{\infty} \leq ||x||$ for all $k \in \mathbb{N}$. So each component sequence $\{x_{k_j}\}$ with k = 1, 2, 3, ...and $1 \leq j \leq n$, is bounded. Starting with $\{x_{k_1}\}$, the sequence of first components, by the Bolzano-Weierstrass Theorem in \mathbb{R} , $\{x_{k_1}\}$ has a convergent subsequence, $\{x_{k_{1_l}}\}$. Starting with each of the $\{x_k\}$, elements whose first component x_{k_1} is in the convergent subsequence of first components, choose a subsequence so that the sequence of second elements is convergent. Continue in this fashion, constructing subsequences of $\{x_k\}$ for which the first, second, and third components form convergent sequences in \mathbb{R} , then the first, second, third, and fourth, and so on until each component forms a convergent sequence. By an earlier theorem, this means the vector subsequence converges.

THEOREM 3.1.13. (9.6) A sequence $\{x_k\}$ in \mathbb{R}^n is convergent if and only if it is Cauchy.

PROOF. Suppose $\{x_n\}$ is Cauchy. Given $\epsilon = 1$, let us choose $N \in \mathbb{N}$ such that

$$||x_n - x_m|| < 1$$
 for all $n, m > N$

By the Triangle Inequality,

$$||x_n|| - ||x_m|| \le ||x_n - x_m|| < 1$$

$$\Rightarrow ||x_n|| \le 1 + ||x_m||$$

Therefore, the sequence $\{x_n\}$ is bounded by

 $\max\{||x_1||, ||x_2||, \dots, ||x_N - 1||, 1 + ||x_m||\}.$

By the Bolzano-Weierstrass Theorem, we conclude $\{x_n\}$ has a convergent subsequence. So:

$$\{x_{n_k}\} \Rightarrow \exists K \in \mathbb{N} \text{ such that } ||x_{n_k} - L|| < \frac{\epsilon}{2} \text{ when } k \ge K$$
$$||x_m - x_{n_k}|| < \frac{\epsilon}{2} \text{ for } m, n_k > N$$

Thus:

$$||x_m - L|| \le ||x_m - x_{n_k}|| + ||x_{n_k} - L|| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$
 when $k > K$ and $m > N$
Therefore, we conclude $x_n \to L$.

The converse has been established in Theorem 3.1.7.

THEOREM 3.1.14. (9.7) Let $\{x_k\}$ be a sequence in \mathbb{R}^n . Then $x_k \to a$ if and only if for every open set V that contains a, there is an $N \in \mathbb{N}$ such that

$$k \geq N$$
 implies $x_k \in V$

THEOREM 3.1.15. (9.8) $E \subseteq \mathbb{R}^n$. Then E is closed if and only if E contains all of its limit points, that is, if and only if

$$x_k \in E$$
 and $x_k \to a$ implies $a \in E$

PROOF. Let $F \subseteq \mathbb{R}^n$ be a closed set and L a limit point of F. Then by definition, every open ball $B_{\epsilon}(L)$ contains points of F other than L. This implies that for every $\epsilon > 0$, $B_{\epsilon}(L) \not\subseteq F^x$. By hypothesis, F is closed, so F^c is open, and by definition if $L \in F^c$, $\exists > 0$ such that $B_{\epsilon}(L) \subseteq F^x$, contradicting that L is a limit point of F, therefore, $L \in F$.

If F contains its limit points, then F is closed. [L is a limit point of F] \Rightarrow ($L \in F$)] \Rightarrow F is closed

$$P \Rightarrow Q \equiv P \lor Q$$
$$(P \Rightarrow Q) \equiv P \land Q$$

 F^c is not open $\Rightarrow (L \text{ is a limit point of } F \text{ and } L \notin F)$. Exists for some $L \in F^c$, for which every neighborhood of L contains a point of $F^{c^c} = F$. For some $L \in F^c$, L is a limit point of F. \Box

3.2. The Heine-Borel Theorem

DEFINITION 3.2.1 (open covering). An open covering of $E \subseteq \mathbb{R}^n$ is a collection of sets $\{V_\alpha\}_{\alpha \in A}$ such that each V_α is open and

$$E \subseteq \bigcup_{\alpha \in A} V_{\alpha}$$

DEFINITION 3.2.2 (finite subcovering). If $\{V_{\alpha}\}_{\alpha \in A}$ is an open covering of $E \subseteq \mathbb{R}^n$, a finite subcovering is a finite collection

$$A_n = \{\alpha_1, \alpha_2, \dots, \alpha_n\} \quad such \ that \quad E \subseteq \bigcup_{i=1}^n V_{\alpha_i}$$

DEFINITION 3.2.3 (compact set). A set $E \subseteq \mathbb{R}$ is compact if and only if every open covering of E has a finite subcovering.

LEMMA 3.2.1 (Borel covering lemma). (9.9) Let E be a closed, bounded subset of \mathbb{R}^n . If $r: E \to (0, \infty)$ is an arbitrary function, then there exist finitely many points y_1, \ldots, y_n such that

$$E \subseteq \bigcup_{j=1}^{n} B_{r(y_j)}(y_j)$$

THEOREM 3.2.1 (Heine-Borel). (9.11) $E \subseteq \mathbb{R}^n$ is compact if and only if it is closed and bounded.

PROOF. Suppose $E \subseteq \mathbb{R}^n$ is closed and bounded, and O_α , $\alpha \in A$, is an open cover of E. By hypothesis, O_α , $\alpha \in A$, is an open cover of E, so every element of E belongs to $\bigcup_{\alpha \in A} O_\alpha$. Since $\bigcup_{\alpha \in A} O_\alpha$ is open set itself, there is an $\epsilon_y > 0$ for every $y \in E$ such that

$$B_{\epsilon_y} \subseteq \bigcup_{\alpha \in A} O_\alpha$$
 and $E \subseteq \bigcup_{y \in E} B_{\epsilon_y}(y)$

Since $r: y \to \epsilon_y$ is a function from E to $(0, \infty)$, By the Borel covering lemma, there exist a finite collection of the $B_{\epsilon_y}(y)$ such that:

$$E \subseteq \bigcup_{i=1}^{n} B_{\epsilon_y}(y)$$

Since each $B_{\epsilon_y}(y)\subseteq O_\alpha$ for some $\alpha\in A$ there is a finite collection of O_α 's that

$$\bigcup_{i=1}^{n} O_{\alpha_i} \supseteq \bigcup_{i=1}^{n} B_{\epsilon_y}(y_i) \supseteq E$$

. Since O_{α} , $\alpha \in A$, was arbitrary, every open cover of E has a finite subcover, and by definition, E is compact.

3.3. Limits of Functions

DEFINITION 3.3.1 (function convergence). (9.14) Let $n, m \in \mathbb{N}$ and $a \in \mathbb{R}^n$, and let V be an open set that contains a. If f is a function

$$f: V \setminus \{a\} \to \mathbb{R}^m$$

we say that f(x) converges to L as x approaches a if and only if, for every $\epsilon > 0$ there is a $\delta > 0$ (which in general depends on ϵ , f, V, and a) such that

$$0 < \|x - a\| < \delta \quad implies \quad \|f(x) - L\| < \epsilon$$

When this is the case, we write

$$f(x) \to L$$
 as $x \to a$ or $L = \lim_{x \to a} f(x)$

and call L the limit of f as x approaches a.

DEFINITION 3.3.2 (iterated limits). Let V be an open subset of \mathbb{R}^2 and $(a,b) \in V$. The iterated limits of f at (a,b) are defined to be:

$$\lim_{x \to a} \lim_{y \to b} f(x, y) = \lim_{x \to a} \left(\lim_{y \to b} f(x, y) \right)$$

and

$$\lim_{y \to b} \lim_{x \to a} f(x, y) = \lim_{y \to b} \left(\lim_{x \to a} f(x, y) \right)$$

THEOREM 3.3.1. (9.15i) Suppose $a \in \mathbb{R}^n$, V is an open set that contains a, and $f, g: V \setminus \{a\} \to \mathbb{R}^m$. If

$$f(x) = g(x)$$
 for all $x \in V \setminus \{a\}$, and $\lim_{x \to a} f(x)$ exists

then

$$\lim_{x \to a} g(x) \quad exists \ and \quad \lim_{x \to a} f(x) = \lim_{x \to a} g(x)$$

THEOREM 3.3.2. (9.15ii) [sequential characterization of limits] Suppose $a \in \mathbb{R}^n$, V is an open set that contains a, and $f: V \setminus \{a\} \to \mathbb{R}^m$. Then

$$\lim_{x \to \infty} f(x) = L \quad if and only if \quad f(x_k) \to L \quad as \quad k \to \infty$$

for every sequence $x_k \in V \setminus \{a\}$ that converges to a as $k \to \infty$.

PROOF. First we can assume: $f(x) \to L$ as $x \to a$ for any sequence $\{x_n\}$ with $x_n \to a$ as $n \to \infty$.

$\Rightarrow \mathbf{Proof}$

For any $\epsilon > 0, \exists N$ such that

$$|f(x_n) - L| < \epsilon$$
 when $n > N$

By our given information, we know $\exists N \in \mathbb{N}$ such that

 $|x_n - a| < \delta$ when $n \ge N$

Then for $n \ge N$, $|x_n - a| < \delta$. By hypothesis, $x_n \in V \setminus \{a\}$, so $x_n \ne a$, and $0 < |x_n - a| < \delta$. By hypothesis, $f(x) \to L$ as $x \to a$, so $f(x_n) \to L$ as $n \to \infty$ by definition.

Since this is true for each $n \ge N$, we have:

$$\lim_{n \to \infty} f(x_n) \to L$$

THEOREM 3.3.3. (9.15iiia) If f(x) and $g(x \text{ have limits as } x \to a, then$

$$\lim_{x \to a} (f+g)(x) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$

PROOF. $\forall \epsilon > 0, \exists \delta > 0$ such that:

 $||(f+g)(x) - (L+M)|| = ||(f(x)+g(x)-L-M|| = ||(f(x)-L)+(g(x)-M)|| < \epsilon \quad \text{when} \quad ||x-a||$ By triangle inequality,

 $||(f(x) - L) + (g(x) - M)|| \le ||f(x) - L|| + ||g(x) - M||$

So, choose δ such that

 $||f(x) - L|| < \frac{\epsilon}{2}$ and $||g(x) - M|| \le \frac{\epsilon}{2}$

Then, for $||x - a|| < \delta$, $||(f + g)(x) - (L + M)|| \le ||f(x) - L|| + ||g(x) - M|| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$

THEOREM 3.3.4. (9.15iiib) If
$$f(x)$$
 has a limit as $x \to a$, then

$$\lim_{x \to a} (\alpha f)(x) = \alpha \lim_{x \to a} f(x)$$

THEOREM 3.3.5. (9.15iiic) If f(x) and $g(x \text{ have limits as } x \to a, then$

$$\lim_{x \to a} (f \cdot g)(x) = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$$

THEOREM 3.3.6. (9.15iiid) If
$$f(x)$$
 has a limit as $x \to a$, then
$$\|\lim_{x \to a} (f)(x)\| = \lim_{x \to a} \|f(x)\|$$

THEOREM 3.3.7. (9.15iv) [squeeze theorem for functions] Suppose $f, g, h: V \setminus \{a\} \to \mathbb{R}$ and

$$g(x) \le h(x) \le f(x)$$
 for all $x \in V \setminus \{a\}$

If

$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = L$$

then the limit of h as x approaches a also exists, and

$$\lim_{x \to a} h(x) = L$$

THEOREM 3.3.8. (9.15v) Suppose $U \subset \mathbb{R}^m$ is open, $L \in U$, and $h: U \setminus \{L\} \to \mathbb{R}^p$ for some $p \in \mathbb{N}$

If

then

$$\lim_{x \to a} g(x) = L \quad and \quad \lim_{y \to L} h(y) = M$$

$$\lim_{x \to a} (h \circ g)(x) = M$$

THEOREM 3.3.9. (9.16) Let $a \in \mathbb{R}^n$, let V be an open set that contains a, and suppose

$$f = (f_1, \ldots, f_m) : V \setminus \{a\} \to \mathbb{R}^m$$

then

$$\lim_{x \to a} f(x) = L = (L_1, \dots, L_m)$$

exists in \mathbb{R}^m if and only if

$$\lim_{x \to a} f_j(x) = L_j$$

exists for $j = 1, \ldots, m$

CHAPTER 4

Metric Spaces

4.1. Introduction

DEFINITION 4.1.1 (metric space). A metric space is pair (X, ρ) consisting of a set X together with a function $\rho : X \times X \to \mathbb{R}$ called the metric of X which satisfies the following properties for all $x, y, z \in X$:

positive definite	$\rho(x,y) \ge 0$ with $\rho(x,y) = 0 \Leftrightarrow x = y$
symmetric	$\rho(x,y) = \rho(y,x)$
triangle inequality	$\rho(x,y) leq \rho(x,z) + \rho(z,y)$

(Note: by definition, $\rho(x, y)$ is finite for all $x, y \in X$.

DEFINITION 4.1.2 (open ball). The open ball in (X, ρ) with center a and radius r is the set

$$B_r(a) = \{ x \in X : \rho(x, a) < r$$

DEFINITION 4.1.3 (closed ball). The closed ball in (X, ρ) with center a and radius r is the set

$$B_r(a) = \{ x \in X : \rho(x, a) \le r$$

DEFINITION 4.1.4 (open set). A set $V \subseteq X$ is said to be open if and only if for every $x \in V$, there is an $\epsilon > 0$ such that

$$B_{\epsilon}(x) \subseteq V$$

DEFINITION 4.1.5 (closed set). A set $E \subseteq X$ is said to be closed if and only if

$$E^c = X \setminus E$$
 is open

DEFINITION 4.1.6 (convergent sequence). Let $\{x_n\}$ be a sequence in X. We say that $\{x_n\}$ converges (in X) if there is a point $a \in X$ called the limit of x_n such that for every epsilon > 0, there is an $N \in \mathbb{N}$ such that

 $\rho(x_n, a) < epsilon \quad whenever \quad n \ge N$

DEFINITION 4.1.7 (Cauchy sequence). Let $\{x_n\}$ be a sequence in X. We say that $\{x_n\}$ is Cauchy if for every epsilon > 0, there is an $N \in \mathbb{N}$ such that

$$\rho(x_n, x_m) < epsilon \quad whenever \quad n, m \ge N$$

DEFINITION 4.1.8 (bounded sequence). Let $\{x_n\}$ be a sequence in X. We say that $\{x_n\}$ is bounded if there is an M > 0 and a point $b \in X$ such that

$$\rho(x_n, b) \leq M \quad for \ all \quad n \in \mathbb{N}$$

DEFINITION 4.1.9 (complete metric space). A metric space (X, ρ) is said to be complete if every Cauchy sequence in X converges to some point in X.

THEOREM 4.1.1 (Example 10.2). Every Euclidean space \mathbb{R}^n is a metric space (\mathbb{R}^n, ρ) where $\rho(x, y) = ||x - y||$ is called the "usual metric on \mathbb{R}^n .

THEOREM 4.1.2 (Example 10.3). \mathbb{R} is a metric space (\mathbb{R}, σ) where

$$\sigma(x,y) = \begin{cases} 0 & x = y \\ 1 & x \neq y \end{cases}$$

 σ is called the discrete metric.

PROOF. Need to show: σ is a metric. 1) Let $x, y \in \mathbb{R}$. By definition,

$$\sigma(x,y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}$$

So, $\sigma(x, y) \ge 0$ for all $x, y \in \mathbb{R}$, and $\sigma(x, y) = 0$ iff x = y. 2) $\sigma(x, y) = \sigma(y, x)$

Case 1. If x = y, $\sigma(x, y) = 0 = \sigma(y, x)$

Case 2. If $x \neq y$, $\sigma(x, y) = 1 = \sigma(y, x,)$ 3) For $x, y, z \in \mathbb{R}$, $\sigma(x, y) \leq \sigma(x, z) + \sigma(z, y)$ Case 1. $x = y, x \neq z$, $\sigma(x, y) = 0 \leq \sigma(x, z) + \sigma(y, z) = 1 + 1$ Case 2. x = y = z, $\sigma(x, y) = 0 = \sigma(x, z) + \sigma(y, z) = 0 + 0$ Case 3. $x \neq y$, $\sigma(x, y) = 1$ Either x = z or $x \neq z$. If x = z, and $x \neq y, y \neq z$, so $\sigma(x, z) + \sigma(z, y) = 0 + 1$, $1 \leq 1$.

If
$$x \neq z$$
 and $x \neq y$, $\sigma(x, y) = 1 \le \sigma(x, z) + \sigma(y, z) = \begin{cases} 1 & if \quad y = z \\ 2 & if \quad y \neq z \end{cases}$

THEOREM 4.1.3 (Example 10.4). If (X, ρ) is a metric space and $E \subseteq X$, then (E, ρ) is a metric space.

THEOREM 4.1.4 (Example 10.5). (\mathbb{Q}, ρ) is a metric space with $\rho(x, y) = |x - y|$.

PROOF. Let $x, y, z \in \mathbb{Q}$. We need to show |x - y| is a metric.

1) $|x - y| \ge 0$ by the definition of absolute value. |x - y| = 0 only if x = y, again by property of absolute value:

$$|x-y| = \begin{cases} x-y & \text{if } x-y \ge 0\\ y-x & \text{if } x-y < 0 \end{cases}$$

This can only be zero if $x - y = 0 \Rightarrow x = y$.

2) |x - y| = |y - x|. By definition of absolute value, |a| = |-a|, so |x - y| = |y - x|

3) By the triangle inequality for real numbers, $|x - y| \le |x - z| + |z - y|$

THEOREM 4.1.5 (Example 10.6). Let C[a, b] be the set of continuous real-valued function on [a, b], that is, the collection of all functions $f : [a, b] \to \mathbb{R}$ continuously and let

$$||f|| = \sup_{x \in [a,b]} |f(x)|$$

Then $\mathcal{C}[a, b], \rho)$ is a metric space with $\rho(f, g) = ||f - g||$ for $f, g \in \mathcal{C}[a, b]$.

PROOF. Note: Definition of a metric: $(X, \rho) : X \times X \to \mathbb{R}$ such that $\forall x, y \in X$:

$$\begin{split} 1)\rho(x,y) &\geq 0 \text{ with } \rho(x,y) = 0 \leftrightarrow x = y \\ 2)\rho(x,y) &= \rho(y,x) \\ 3)\rho(x,y) &\leq \rho(x,z) + \rho(z,y) \end{split}$$

Let X = C[a, b] with $\rho(f, g) = ||f - g||$ and $||f|| = \sup |f(x)|$. 2) Since $|f - g| = |g - f| \forall x \in [a, b]$, $\sup |f - g| = \sup |g - f|$. By definition, this implies $\rho(f, g) = \rho(g, f)$. 1) $|f - g| \ge 0 \forall x \in [a, b]$. If f = g, $|f - g| = |0| = 0 \forall x \in [a, b]$, so $\sup_{x \in [a, b]} |f - g| = 0$. Suppose $\rho(f, g) = 0$. This implies $\sup |f - g| = 0$. By definition of absolute values, $0 \le \sup |f - g| = 0.0 \le |f - g| = 0$, implying $f = g \forall x \in [a, b]$. 3) $\sup |f - g| \le \sup |f - h| + \sup |h - g| \forall x \in [a, b]$. We know that $|f - g| = |f - h + h - g| \le |f - h| + |h - g| \forall x \in [a, b]$. This implies $\sup |f - g| \le \sup (|f - h| + |h - g|) \le \sup |f - h| + \sup |h - g|$. Therefore $\rho(f, g) \le \rho(f, h) + \rho(h, g)$.

THEOREM 4.1.6 (Example 10.9a). Every open ball in (X, ρ) is open.

THEOREM 4.1.7 (Example 10.9b). Every closed ball in (X, ρ) is closed.

THEOREM 4.1.8 (Example 10.10). Singleton sets (sets consisting of a single element $a \in X$) are closed.

THEOREM 4.1.9 (Remark 10.11). In an arbitrary metric space (\mathbb{R}, ρ) , X and \emptyset are both open and closed.

THEOREM 4.1.10 (Example 10.12). Every subset of the discrete space (\mathbb{R}, σ) is both open and closed.

THEOREM 4.1.11 (Theorem 10.14i). A sequence in a metric space can have at most one limit.

THEOREM 4.1.12 (Theorem 10.14ii). If $x_n \in X$ converges to a, every subsequence x_{n_k} also converges to a.

THEOREM 4.1.13 (Theorem 10.14iii). Every convergent sequence in a metric space is bounded.

THEOREM 4.1.14 (Theorem 10.14iv). Every convergent sequence in a metric space is Cauchy.

THEOREM 4.1.15 (Theorem 10.15). A sequence $x_n \in X$ converges to a if and only if for every open set V that contains a, there is an $N \in \mathbb{N}$ such that

 $x_n \in V$ whenever $n \ge N$

PROOF. \Rightarrow By hypothesis, $x_n \to a$. Let V be an open set that contains a. By definition of an open set, $\exists \epsilon > 0$ such that $B_{\epsilon}(a) \subseteq V$. Since $x_n \to a$ as $n \to \infty$, there is an $N \in \mathbb{N}$ such that $\rho(x_n, a) < \epsilon$ when $n \geq N$. This implies $x_n \in B_{\epsilon}(a)$ when $n \geq N$.

 $\label{eq:second} \begin{array}{l} \Leftarrow \mbox{ Let } \ell > 0 \mbox{ be given. Let } V \mbox{ be an open set with } a \in V. \mbox{ By definition, } \exists \delta > 0 \mbox{ such that } B_{\delta}(a) \subseteq V. \mbox{ Then } B_{\delta}(a) \mbox{ is an open set that contains } a, \mbox{ so there is an } N \in \mathbb{N} \mbox{ such that for } n \geq N \implies x_n \in B_{\delta}(a). \mbox{ Likewise, } B_{\frac{\delta}{2}}(a) \mbox{ is an open set that contains } a, \mbox{ so there is an } N \in \mathbb{N} \mbox{ such that } n \geq N \implies x_n \in B_{\delta}(a). \mbox{ Likewise, } B_{\frac{\delta}{2}}(a) \mbox{ is an open set that contains } a, \mbox{ so there is an } N \in \mathbb{N} \mbox{ such that } n \geq N \implies x_n \in B_{\frac{\delta}{2}}(a) \mbox{ when } n \to \infty. \mbox{ Continuing in this fashion to } x_n \in B_{\frac{\delta}{2}^k}(a) \mbox{ when } n \geq N_k \mbox{ with } k \geq \log_2 \frac{\delta}{\epsilon}, \mbox{ where } \frac{\delta}{\epsilon}^k < \epsilon. \mbox{ So, } x_n \in B_{\frac{\delta}{2}^k}(a) \mbox{ when } n \geq N_k, \mbox{ implying } \rho(x_n, a) < \frac{\delta}{2}^k < \epsilon. \end{array}$

THEOREM 4.1.16 (Theorem 10.16). A subset E of the metric space (X, ρ) is closed if and only if the limit of every convergent sequence in E belongs to E.

THEOREM 4.1.17 (Remark 10.17). The discrete metric space (\mathbb{R}, σ) contains bounded sequences with no convergent subsequence.

Proof.

$$\sigma(x,y) = \begin{cases} (\mathbb{R},\sigma) \\ 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}$$

In S, there exist bounded sequences with no convergent subsequence. Let $x \in \mathbb{R}$. For any $y \in \mathbb{R}$, with $y \neq x$, $\sigma(x, y) = 1$. Therefore, every sequence is bounded because $\sigma(x_n, x) \leq 1$. Let $\{x_n\} = \{1, 2, 3, 4, ...\} = \{\mathbb{N}\}$ for any $n \in \mathbb{N}$, if $\epsilon = \frac{1}{2}$, there does not exist any point a and integer N with $\sigma(x_n, a) < \frac{1}{2}$ when $n \geq N$. Therefore, $\{x_n\}$ does not converge. The same argument holds for any subsequence $\{x_{n_k}\}$.

THEOREM 4.1.18 (Remark 10.18). The metric space (\mathbb{Q}, ρ) contains Cauchy sequences that do not converge.

PROOF. By counterexample, the sequence $1, 1.4, 1.414, 1.4142, 1.41421, \ldots$ in \mathbb{R} converges to $\sqrt{2}$. But, $\sqrt{2} \notin \mathbb{Q}$. So the limit of this sequence does not belong to \mathbb{Q} and we say it does not converge. \Box

THEOREM 4.1.19 (Theorem 10.21). A subset E of a complete metric space (X, ρ) is a complete metric space if and only if E is closed.

4. METRIC SPACES

4.2. Cluster Points and Limits

DEFINITION 4.2.1 (cluster point). A point $a \in X$ is said to be a cluster point of X if and only if $B_{\delta}(a)$ contains infinitely many points (of X) for each $\delta > 0$.

DEFINITION 4.2.2 (function limit). Let a be a cluster point of X and $f: x \setminus \{a\} \to Y$. Then f is said to converge to L as x approaces a if and only if, for every $\epsilon > 0$, there is a $\delta > 0$ such that

$$0 < rho(x, a) < \delta \quad \Rightarrow \quad \tau(f(x), L) < \epsilon$$

f is said to be continuous on E if it is continuous at every $x \in E$.

THEOREM 4.2.1 (10.26i). Let a be a cluster point of X and $f, g : X \setminus \{a\} \to Y$. If f(x) = g(x) for all $x \in X \setminus \{a\}$, and f(x) has a limit as $x \to a$, then g(x) also has a limit as $x \to a$ and

$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x)$$

4.3. Compactness

DEFINITION 4.3.1 (compactness). A subset H of a metric space X is said to be compact if and only if every open covering of H has a finite subcover.

DEFINITION 4.3.2 (separable). A metric space X is said to be separable if and only if it contains a countable dense subset (i.e., iff there is a countable subset Z of X such that for every point $A \in X$ there is a sequence $x_k \in Z$ such that $x_k \to a$ as $k \to \infty$.

THEOREM 4.3.1 (Remark 10.43). The empty set and all finite subsets of a metric space are compact.

PROOF. Part $1 \emptyset \subseteq X$, i.e., (X, ρ) .

Let $O \subseteq \bigcup_{\alpha \in A} O_{\alpha}$ be any non-empty collection of open subsets of X. Pick any element O_{α} . Then, $\emptyset \subseteq O_{\alpha}$, so O_{α} is a finite open cover of \emptyset , with one element. Since we can do this for any open cover of \emptyset , the empty set, \emptyset , is compact.

Part 2 Finite Subsets

Let *E* be a finite subset of *X*, and $0 = \bigcup_{\alpha \in A} O_{\alpha}$ an open cover. That is, $E \subseteq \bigcup_{\alpha \in A} O_{\alpha}$. Let x_i for i = 1, 2, 3, ..., N be the finite elements of *E*. Every x_i belongs to *O*, so every x_i belongs to at least one O_{α} . Let $x_1 \in O_{\alpha_1}, x_2 \in O_{\alpha_2}, ..., x_N \in O_{\alpha_N}$. Then $\bigcup_{i=1}^N O_{\alpha_i}$ is a finite subcover containing *E*. Since *O* was arbitrary, we can find such a subcover for any open cover.

THEOREM 4.3.2 (Remark 10.44). In a metric space a compact set is always closed.

THEOREM 4.3.3 (Remark 10.45). A closed subset of a compact set is compact.

THEOREM 4.3.4 (10.46). Let H be a subset of a metric space X. If H is compact, then H is closed and bounded.

THEOREM 4.3.5 (Remark 10.47). The converse of the previous theorem is false.

THEOREM 4.3.6 (10.49 Lindelof). Let E be a subset of a separable metric space X. If $\{V_{\alpha}\}_{\alpha \in A}$ is a collection of open sets and $E \subseteq \bigcup_{\alpha \in A} V_{\alpha}$ then there is a countable subset $\{\alpha_1, \alpha_2, \ldots\}$ of A such that

$$E \subseteq \bigcup_{k=1}^{\infty} V_{\alpha_k}$$

THEOREM 4.3.7 (10.50 Heine-Borel). Let X be a separable metric space which satisfies the Bolzano-Weierstrass Property, and H a subset of a X. Then H is compact if and only if it is closed and bounded.

4.4. Function Algebras and the Stone-Weierstrass Theorem

DEFINITION 4.4.1 (uniform continuity). Let X be a metric space, E a nonempty subset of X, and $f : E \to Y$. Then f is said to be uniformly continuous on E if and only if given $\epsilon > 0$ there is a $\delta > 0$ such that

$$\rho(x,a) < \delta \quad and \quad x, a \in E \quad imply \quad \tau(f(x), f(a)) < \epsilon$$

DEFINITION 4.4.2 (algebra). A subset A of $\mathcal{C}(X)$ is said to be a (real function) algebra in $\mathcal{C}(X)$ if and only if

- $\emptyset \neq A \subseteq \mathcal{C}(X)$
- If $f, g \in A$, then f + g and fg belong to A
- If $f \in A$ and $c \in \mathbb{R}$, then $cf \in A$.

DEFINITION 4.4.3 (uniformly closed). $A \subseteq \mathcal{C}(X)$ is said to be (uniformly) closed if and only if for every sequence $f_n \in A$ satisfying

 $||f_n - f|| \to 0 \quad as \quad n \to \infty \Rightarrow \lim f_n = f \in A$

DEFINITION 4.4.4 (uniformly dense). $A \subseteq \mathcal{C}(X)$ is said to be (uniformly) dense if and only if given $\epsilon > 0$ and $f \in \mathcal{C}(X)$, there is a function

$$g \in A$$
 such that $||g - f|| < \epsilon$

DEFINITION 4.4.5 (separates points). $A \subseteq C(X)$ separates points if and only if, given $x, y \in X$ with $x \neq y$, there exists an $f \in A$ such that

$$f(x) \neq f(y)$$

THEOREM 4.4.1 (10.52). If E is a compact subset of X and $f : X \to Y$. Then f is uniformly continuous on E if and only if it is continuous on E.

THEOREM 4.4.2 (10.58). Suppose $f : X \to Y$. Then f is continuous if and only if $f^{-1}(V)$ is open in X for every open $V \subseteq Y$.

THEOREM 4.4.3 (10.61). If H is compact in X and $f : H \to Y$ is continuous on H, then f(H) is compact in Y.

THEOREM 4.4.4 (10.63 Extreme Value Theorem). Let H be a nonempty, compact subset of a metric space X. If $f: H \to \mathbb{R}$ is continuous, then

$$M = \sup\{f(x) : x \in H\} \quad and \quad m = \int\{f(x) : x \in H\}$$

are finite real numbers and there exist points x_M and x_m in H such that

$$M = f(x_M)$$
 and $m = f(x_m)$

THEOREM 4.4.5 (10.64). If H is a compact subset of X and $f : H \to Y$ is 1-1 and continuous, then f^{-1} is continuous on f(H).

THEOREM 4.4.6 (10.69 Stone-Weierstrass). Suppose X is a compact metric space. If A is an algebra in $\mathcal{C}(X)$ that separates the points of X and contains the constant functions, then A is uniformly dense in $\mathcal{C}(X)$