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2 1. PRELIMINARIES AND DEFINITIONS

Definition 1.0.1 (binary operation). A binary operation on a
set S is a function from S × S into S.

Examples of binary operations:

• + : N × N → N Addition of natural numbers
• · : N × N → N Multiplication of natural numbers

Definition 1.0.2 (group). A group consists of:

• A set G
• A binary operation + : G × G → G with the following proper-

ties:
x + (y + z) = (x + y) + z ∀x, y, z ∈ G (associativity)
∃0 ∈ G such that a + 0 = 0 + a = a ∀a ∈ G (identity)
∀a ∈ G ∃ a−1 such that a + a−1 = a−1 + a = 0 (inverse)

Definition 1.0.3 (field). A field consists of:

• A set F
• A binary operation + : F × F → F with the following proper-

ties:
x + y = y + x ∀x, y ∈ F (additive commutativity)
x + (y + z) = (x + y) + z ∀x, y, z ∈ F (additive associativity)
∃0 ∈ F such that a + 0 = 0 + a = a ∀a ∈ F (additive identity)
∀a ∈ F ∃ a−1 such that a + a−1 = a−1 + a = 0 (additive inverse)

• A binary operation : F ×F → F with the following properties:
xy = yx ∀x, y ∈ F (multiplicative commutativity)
x(yz) = (xy)z ∀x, y, z ∈ F (multiplicative associativity)
∃1 ∈ F such that a1 = 1a = a ∀a ∈ F (multiplicative identity)
∀a ∈ F \ 0 ∃ a−1 such that aa−1 = a−1a = 1 (multiplicative inverse)
x(y + z) = xy + xz ∀x, y, z ∈ F (distributive property)

Definition 1.0.4 (vector space). A vector space or linear space

consists of:

• A field F of elements called scalars

• A commutative group V of elements called vectors with re-
spect to a binary operation +
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• A binary operation : F×V → V called scalar multiplication

that associates with each scalar α ∈ F and vector v ∈ V a
vector αv in such a way that:

1v = v ∀v ∈ V
(αβ)v = α(βv) ∀α, β ∈ F, v ∈ V
α(v + w) = αv + αw ∀α ∈ F, v, w ∈ V
(α + β)v = αv + βv ∀α, β ∈ F, v ∈ V

Definition 1.0.5 (norm). A nonnegative real-valued function ‖ ‖ :
V → R is called a norm if:

• ‖v‖ ≥ 0 and ‖v‖ = 0 ⇔ v = ~0
• ‖v + w‖ ≤ ‖v‖ + ‖w‖ (triangle inequality)
• ‖αv‖ = |α| ‖x‖ ∀α ∈ F, v ∈ V

Definition 1.0.6 (normed linear space). A linear space V together
with a norm ‖ · ‖, denoted by the pair (V, ‖ · ‖), is called a normed

linear space

Definition 1.0.7 (inner product). Let the field F be either R or C
and a set V of vectors which together with F form a vector space. An
inner product on V is a map

· : V × V → F

with the following properties:

(u + v) · w = u · w + v · w ∀u, v, w ∈ V
(αu) · v = α(u · v) ∀α ∈ F, u, v ∈ V
u · v = (v · u) ∀u, v ∈ V

u · u ≥ 0 ∀u ∈ V with equality when u = ~0

If the underlying field is R, the fourth condition can be replaced by

u · v = v · u ∀u, v ∈ V

since a real number is its own conjugate. In this case, the condition
just says the inner product is commutative.

Definition 1.0.8 (metric). A metric on a set S is a function

ρ : S × S → R
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where ρ has the following three properties for any x, y, z ∈ S:

ρ(x, y) ≥ 0 and ρ(x, y) = 0 ⇔ x = y
ρ(x, y) = ρ(y, x)
ρ(x, y) ≤ ρ(x, z) + ρ(z, y)

Definition 1.0.9 (metric space). A metric space is a pair {S, ρ}
where S is a set and ρ is a metric defined on S.

Definition 1.0.10 (topology). A topology is a set X and a col-
lection J of subsets of X having the following properties:

• ∅ and X are in J
• The union of any subcollection of elements of J belongs to J
• The intersection of any finite subcollection of J belongs to J



CHAPTER 2

Euclidean Spaces Rn

5



6 2. EUCLIDEAN SPACES Rn

2.1. Algebraic Structure

Definition 2.1.1 (Euclidean space). For any natural number n,
the n-fold Cartesian product of R with itself is called a Euclidean space
and denoted by the symbol Rn.

Rn = {(x1, x2, . . . , xn) : xi ∈ R, 1 ≤ i ≤ n}

Definition 2.1.2 (vector sum in Euclidean space). For any x, y ∈
Rn, define

+ : Rn × Rn → Rn by x + y = (x1 + y1, x2 + y2, . . . , xn + yn)

Definition 2.1.3 (scalar product in Euclidean space). For any
x ∈ Rn and α ∈ R, define

: R × Rn → Rn by αx = (αx1, αx2, . . . , αxn)

Definition 2.1.4 (inner product in Euclidean space). For any
x, y ∈ Rn, define

· : Rn × Rn → R by x · y = (x1y1 + x2y2 + · · · + xnyn)

Definition 2.1.5 (cross product in R3). For any x, y ∈ R3, define

× : R3×R3 → R3 by x×y = (x2y3−x3y2, x3y1−x1y3, x1y2−x2y1)

Definition 2.1.6 (norms in Euclidean space). For any x ∈ Rn,
define

‖x‖ : Rn → R by ‖x‖ =

√

√

√

√

n
∑

i=1

|xi|2

‖x‖1 : Rn → R by ‖x‖1 =
n

∑

i=1

|xi|
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‖x‖∞ : Rn → R by ‖x‖∞; = max{|x1|, |x2|, . . . , |xn|}

Definition 2.1.7 (Euclidean distance). For any x, y ∈ Rn, define

d : Rn × Rn → R by d(x, y) = ‖x − y‖

Theorem 2.1.1. Rn is a vector space.

Proof. Part 1. First we need to show that Rn with the usual
definition of a sum in terms of componentwise addition,

x + y = (x1 + y1, x2 + y2, . . . , xn + yn)

is a commutative group. To show this, we need to show that:

• Rn contains an identity element
−→
0 such that v +

−→
0 = v for

all v ∈ Rn

• Rn contains an inverse element −v such that v + (−v) =
−→
0

for all v ∈ Rn

• Addition in Rn is associative: u + (v + w) = (u + v) + w
• Addition in Rn is commutative: u + v = v + u

First, define −→
0 = (0, 0, . . . , 0)

which is the element of Rn with every component zero. Then for any
v ∈ Rn,

v +
−→
0 = (v1 + 0, v2 + 0, . . . , vn + 0)

but for any real number vj, vj + 0 = vj, so

v +
−→
0 = (v1 + 0, v2 + 0, . . . , vn + 0) = (v1, v2, . . . , vn) = v

Next, define

−v = (−v1,−v2, . . . ,−vn)

Then for any v ∈ Rn,

v+(−v) = (v1+(−v1), v2+(−v2), . . . , vn+(−vn)) = (0, . . . , 0) =
−→
0

Now, establish that addition is associative. Let u, v, w ∈ Rn. Then

u + (v + w) = (u1 + (v1 + w1), u2 + (v2 + w2), . . . , un + (vn + wn))
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because addition in R is associative, we can write this as

u+(v+w) = ((u1+v1)+w1, (u2+v2)+w2, . . . , (un+vn)+wn)) = (u+v)+w

This establishes that Rn is a group. However, we need it to be a
commutative group, so we have to show that for any u, v ∈ Rn,

u + v = v + u

By definition,

u + v = u1 + v1, u2 + v2, . . . , un + vn

Because addition in R is commutative, we can write

u+v = (u1 +v1, u2 +v2, . . . , un +vn) = (v1 +u1, v2 +u2, . . . , vn +un)

= v + u

For the field component, we will use R, omitting the proof that R is a
field.

Finally, we have to define multiplication of a vector by a scalar,
which has to satisfy:

1v = v ∀v ∈ V
(αβ)v = α(βv) ∀α, β ∈ F, v ∈ V
α(v + w) = αv + αw ∀α ∈ F, v, w ∈ V
(α + β)v = αv + βv ∀α, β ∈ F, v ∈ V

For any scalar α and vec-

tor v, define
αv = (αv1, αv2, . . . , αvn)

Then if 1 is the unit element of the field of scalars,

1v = (1v1, 1v2, . . . , 1vn) = (v1, . . . , vn) = v

If α, β ∈ R and v ∈ Rn, then

(αβ)v = (αβv1, αβv2, . . . , αβvn)

= (α(βv1), α(βv2), . . . , α(βvn)) = α(βv)

If α ∈ R and v, w ∈ Rn, then

α(v + w) = α(v1 + w1, v2 + 22, . . . , vn + wn)

= (αv1 + αw1, αv2 + αw2, . . . , αvn + αwn)

= (αv1, · · · , αvn) + (αw1, . . . , αwn) = αv + αw

Finally, if α, β ∈ R and v ∈ Rn, then

(α + β)v+ = (α + β)v1, (α + β)v2, . . . , (α + β)vn)

= (αv1 + · · · , αvn) + β(v1 + · · · + βvn) = αv + βv

¤
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Theorem 2.1.2. ” · ” is an inner product.

Proof. We need to show that the dot product on Rn defined by

x · y = x1y1 + x2y2 + · · · + xnyn

is an inner product.

First we need to show that for u, v, w ∈ Rn,

(u + v) · w = u · w + v · w
By the definition of vector addition in Rn,

u + v = (u1 + v1, u2 + v2, . . . , un + vn)

so, by the definition of the dot product,

(u + v) · w = ((u1 + v1)w1 + (u2 + v2)w2 + · · · + (un + vn)wn

= ((u1w1 + v1w1) + (u2w2 + v2w2) + · · · + (unwn + vnwn)

= ((u1w1 + v1w1) + (u2w2 + v2w2) + · · · + (unwn + vnwn)

= u · w + v · w

Next, we need to show that for u, v ∈ Rn and α ∈ R,

(αu) · v = α(u · v)

= (αu1, αu2, . . . , αun) · (v1, v2, . . . , vn)

= (αu1v1 + αu2v2 + · · · + αunvn)

= α(u1v1 + u2v2 + · · · + unvn) = α(u · v)

Next, we need to show that for u, v ∈ Rn,

u · v = v · u
u · v = (u1v1 + u2v2 + · · · + unvn)

by the commutativity of real multiplication, we can write this as

= (v1u1 + v2u2 + · · · + vnun) = v · u

Finally, we need to show that for u ∈ Rn,

u· ≥ 0 with equality only when u =
−→
0

By definition,
u · u = u2

1 + u2
2 + cdots + u2

n

which cannot be negative since it is a sum of squared real numbers, all
of which are nonnegative.
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Furthermore, it can be zero only if u2
1 = u2

2 = · · · = u2
n = 0 which

can only happen if u1 = u2 = · · · = un = 0, which makes u =
−→
0 . ¤

Theorem 2.1.3. ‖ · ‖ is a norm.

Proof. We need to show that:

• 1. ‖x‖ ≥ 0 and ‖x‖ = 0 iff x = 0

• 2. ‖x + w‖ ≤ ‖x‖ + ‖w‖

• 3. ‖αx‖ = |α|‖x‖,∀α ∈ F, x ∈ X

Part 1. By definition,

‖x‖2 =
n

∑

i=1

x2
i ≥ 0

because each x2
i is greater than or equal to zero. since all quantities

are nonnegative, taking square roots gives

‖x‖ ≥ 0

Next, suppose

‖x‖2 =
n

∑

i=1

x2
i = 0

Since all x2
i are greater than or equal to zero, we can only have equality

if all of the xi are zero. Finally, suppose x =
−→
0 . Then

‖x‖2 = sumn
i=10

2 = 0

so ‖x‖ = 0. Part 2. By definition,

‖x + y‖2 =
n

∑

i=1

(xi + yi)
2 =

n
∑

i=1

x2
i + 2

n
∑

i=1

xiyi +
n

∑

i=1

y2
i

but
n

∑

i=1

x2
i + 2

n
∑

i=1

xiyi +
n

∑

i=1

y2
i ≤

n
∑

i=1

x2
i + 2

∣

∣

∣

∣

∣

n
∑

i=1

xiyi

∣

∣

∣

∣

∣

+
n

∑

i=1

y2
i
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By the Cauchy-Schwarz inequality,

n
∑

i=1

x2
i +2

∣

∣

∣

∣

∣

n
∑

i=1

xiyi

∣

∣

∣

∣

∣

+
n

∑

i=1

y2
i ≤

n
∑

i=1

x2
i +2‖x‖‖y‖+

n
∑

i=1

y2
i = (‖x‖+‖y‖)2

so
‖x + y‖2 ≤ (‖x‖ + ‖y‖)2

since all quantities are positive, we can take square roots on both sides
to get

‖x + y‖ ≤ ‖x‖ + ‖y‖
Part 3.

‖αx‖ =
√

|αx1|2 + |αx2|2 + . . . + |αxn|2

=
√

α2|x1|2 + α2|x2|2 + . . . + α2|xn|2

=
√

α2(|x1|2 + |x2|2 + . . . + |xn|2)
= α

√

α(|x1|2 + |x2|2 + . . . + |xn|2)
= |α|‖x‖

¤

Theorem 2.1.4. ‖ · ‖1 is a norm.

Proof. We need to show that the following three statements are
true for all α ∈ R and v, w ∈ Rn:

• ‖v‖1 ≥ 0 with |v‖1 = 0 ⇔ v =
−→
0

• ‖v + w‖1 ≤ ‖v‖1 + ‖w‖1

• ‖αv‖1 = |α|‖v‖1

Suppose v ∈ Rn. Then

‖v‖1 = |v1| + |v2| + · · · + |vn| with each |vi| ≥ 0

Since each term is greater than or equal to zero, the sum ‖v‖1 must
also be greater than or equal to zero.

Now consider

‖v + w‖1 = |v1 + w1| + |v2 + w2| + · · · + |vn + wn|
≤ |v1| + |w1| + |v2| + |w2| + · · · + |vn| + |wn| = ‖v‖1 + ‖w‖1

Finally,
‖αv‖1 = |αv1| + |αv2| + · · · + |αvn|
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By the properties of absolute values, this is:

= |α||v1| + |α||v2| + · · · + |α||vn| = |α|(|v1| + · · · + |vn|) = |α|‖v‖1

¤

Theorem 2.1.5. ‖ · ‖∞ is a norm.

Theorem 2.1.6. d(·, ·) is a metric.

Proof. By definition, a metric is a function d : Rn ×Rn → R such
that

d(x, y) ≥ 0 and d(x, y) = 0 ⇔ x = y
d(x, y) = d(y, x)
d(x, y) ≤ d(x, z) + d(z, y)

Part 1: d(x, y) ≥ 0 and d(x, y) = 0 ⇔ x = y.

We know
‖xi − yi‖ =

√

|xi − yi|2
This is greater than or equal to zero by the definition of absolute value.
So, the sum

d(x, y) = ‖xi − yi‖ =
√

|x1 − y1| + · · · + |xn − yn|
is greater than or equal to zero.

Part 2: d(x, y) = d(y, x)

Suppose not. Then

|x1 − y1| + · · · + |xn − yn| 6= |y1 − x1| + · · · + |yn − xn|
Let c1 = xi − yi. Then

d(x, y) = |c1| + |c2| + · · · + |cn|
and −c1 = yi − xi, and by substitution,

|c1| + · · · + |cn| 6= | − c1| + · · · + | − cn|
which is a contradiction since |ci| = | − ci| for every i, 1 ≤ i ≤ n. ¤
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Theorem 2.1.7 (Cauchy-Schwarz inequality). For any x, y ∈ Rn,

|x · y| ≤ ‖x‖ ‖y‖

Proof.

(x − ty) · (x − ty) = ‖x − ty‖ ≥ 0

x · x − 2tx · y + t2y · y ≥ 0

‖x‖2 − 2t(x · y) + t2‖y‖2 ≥ 0

Let t = (x·y)
‖y‖2

‖x‖2 − 2(x · y)2

‖y‖2
+

(x · y)2

‖y‖4
‖y‖2 ≥ 0

‖x‖2 − (x · y)2

‖y‖2
≥ 0

‖x‖2 ≥ (x · y)2

‖y‖2

‖x‖2‖y‖2 ≥ (x · y)2

‖x‖‖y‖ ≥ |x · y|
¤

Theorem 2.1.8. For any x ∈ Rn,

‖x‖∞ ≤ ‖x‖ ≤ √
n‖x‖∞

Proof. By definition,

‖x‖∞ = max(|x1|, |x2|, . . . , |xn|)
so

‖x‖2
∞ = max(|x1|2, |x2|2, . . . , |xn|2)

and

‖x‖2 = |x1|2+|x2|2+· · ·+|xn|2 ≥ max(|x1|2, |x2|2, . . . , |xn|2) = ‖x‖2
∞

Since ‖x‖ and ‖x‖∞ are both nonnegative, we can take square roots of
both terms and the inequality still holds:

‖x‖∞ ≤ ‖x‖
Now consider

‖x‖2 = (|x1|2 + · · · + |xn|2) ≤ n max(|x2
1 + · · · + |xn|2) = n‖x‖2

∞
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Since all quantities are nonnegative, we can write:

‖x‖2 ≤ √
n‖x‖∞

and so

‖x‖∞ ≤ ‖x‖ ≤ √
n‖x‖∞

¤

Theorem 2.1.9. For any x ∈ Rn,

‖x‖ ≤ ‖x‖1 ≤
√

n‖x‖

Proof. Part 1.

By definition,

||x|| =
√

|x1|2 + · · · + |xn|2
||x||1 = |x1| + · · · + |xn|

Squaring each norm:

||x||2 =
√

|x1|2 + · · · + |xn|2
2

= |x1|2 + · · · + |xn|2

||x||21 = (|x1|+· · ·+|xn|)2 = |x1|2+· · ·+|xn|2 + 2·
∑

|xi||xj| where 1 < i < j < n

By definition of absolute values, we know that 2 · ∑ |xi||xj| will be
greater than or equal to 0. Therefore, we can conclude:

|x1|2 + · · · + |xn|2 ≤ |x1|2 + · · · + |xn|2 + 2 ·
∑

|xi||xj|

Implying that: ||x||2 ≤ ||x||21. Taking the square root: ||x|| ≤ ||x||1

Part 2.

Multiplying the squared Euclidean norm:

n ||x||2 = n
√

|x1|2 + · · · + |xn|2
2

= n(|x1|2+· · ·+|xn|2) = n
∑

|xi|2 for i = 1, . . . , n

From Part 1, we say the ℓ1 norm squared as:

||x||21 = (|x1|+· · ·+|xn|)2 =
∑

|xi|2 + 2·
∑

|xi||xj| where 1 < i < j < n

Subtracting the two norms:

n ||x||2 − ||x||1 = n
∑

|xi|2 −
(

∑

|xi|2 + 2 ·
∑

|xi||xj|
)
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Combining like-terms:
(

∑

n|xi|2 − |xi|2
)

+ 2 ·
∑

|xi||xj|

=
∑

(n− 1)|xi|2 + 2 ·
∑

|xi||xj| = (n− 1)
∑

|xi|2 + 2 ·
∑

|xi||xj|
Substituting in ℓ1 norm squared:

= (n − 1) ||x||21
¤

Theorem 2.1.10. For any x, y ∈ Rn,

‖x − y‖ ≥ ‖x‖ − ‖y‖

Proof. By definition,

‖x − y‖2 =
n

∑

i=1

(xi − yi)
2 =

n
∑

i=1

x2
i − 2

∑

i=1n

xiyi +
n

∑

i=1

y2
i

=
n

∑

i=1

x2
i − 2(x · y) +

n
∑

i=1

y2
i

Since |x · y| ≥ x · y,
n

∑

i=1

x2
i − 2(x · y) +

n
∑

i=1

y2
i ≥

n
∑

i=1

x2
i − 2|x · y| +

n
∑

i=1

y2
i

Using the Cauchy-Schwartz inequality, we can write
n

∑

i=1

x2
i − 2|x · y| +

n
∑

i=1

y2
i ≥

n
∑

i=1

x2
i − 2‖x‖‖y‖ +

n
∑

i=1

y2
i = (‖x‖ − ‖y‖)2

from which we can write

‖x − y‖2 ≥ (‖x‖ − ‖y‖)2

which, since ‖x − y‖ ≥ 0, implies

‖x − y‖ ≥ ‖x‖ − ‖y‖
¤
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2.2. The Usual Topology of Rn

Definition 2.2.1 (open ball). For any r > 0 and a ∈ Rn, the open
ball centered at a with radius r is the set of points

Br(a) = {x ∈ Rn : ‖x − a‖ < r}

Definition 2.2.2 (closed ball). For any r > 0 and a ∈ Rn, the
closed ball centered at a with radius r is the set of points

Br(a) = {x ∈ Rn : ‖x − a‖ ≤ r}

Definition 2.2.3 (open set). A subset O of Rn is said to be open
if and only if for every a ∈ O, there is an ǫ > 0 such that

Bǫ(a) ⊆ O

Definition 2.2.4 (closed set). A subset F of Rn is said to be closed
if and only if

F c = R \ F is open

that is, if and only if its compliment F c is open.

Definition 2.2.5 (interior). If E is a subset of Rn, the interior of
E is the set

E◦ =
⋃

{V : V ⊆ E and V is open}
that is, E◦ is the union of all open subsets of E.

Definition 2.2.6 (closure). If E is a subset of Rn, the closure of
E is the set

E =
⋂

{F : F ⊇ E and F is closed}

that is, E is the intersection of all closed sets that contain E.

Definition 2.2.7 (boundary). If E is a subset of Rn, the boundary
of E is the set

∂E = {x ∈ Rn : for all r > 0, Br(x)∩E 6= ∅ and Br(x)∩Ec 6= ∅}
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Theorem 2.2.1. Suppose a ∈ Rn and r > 0. Let x be and arbitrary
element of Br(a). Then there exists an ǫ > 0 such that

Bǫ(x) ⊆ Br(a)

Theorem 2.2.2. Suppose a ∈ Rn. Then the singleton set

{a} is closed

Proof. Let F be the Singleton set containing a. The only sequence
in F is {a, a, a, a, a...}, the constant sequence where every element is a.
Since limn→∞kn = a ∈ F, so F contains its limit points. By theorem
3.1.15, F is closed. ¤

Theorem 2.2.3. The empty set ∅ is both open and closed.

Proof. Clearly for any x ∈ Rn, there exists an ǫ > 0 such that
Bǫ(x) ⊆ Rn, since this statement is true for any ǫ > 0. So Rn is open.
By definition its compliment, the empty set, is closed. Now consider
∅. ∅ contains no elements, so we can say that the condition that every
x ∈ ∅ is the center of an open ball contained in ∅ is true vacuously. ¤

Theorem 2.2.4. Considered as a set, Rn is both open and closed.

Proof. We have previously established that the empty set is open,
so its compliment Rn is closed. Furthermore, if x ∈ Rn, for any ǫ > 0,
Bǫ(x) ⊆ Rn, so Rn is open. ¤

Theorem 2.2.5. The collection of open sets as defined above is a
topology on Rn

Proof. We need to show that the collection of sets T satisfying
the definition of an open set form a topology, that is,

• Rn and ∅ are open
• Arbitrary unions of open sets are open
• Finite intersections of open sets are open

From theorems 2.3 and 2.4, Rn and ∅ are open. Now suppose Oα, α ∈ A
is a collection of open subsets of Rn indexed by A, and let

O =
⋃

α∈A

Oα
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Then for each x ∈ O, x ∈ Oα for some α ∈ A. By hypothesis, Oα is
open, so there is an ǫ > 0 such that

Bǫ(x) ⊆ Oα

but Oα ⊆ O, so we have

Bǫ(x) ⊆ Oα ⊆ O

Since x was arbitrarily chosen, we can find such an ǫ for any x ∈ O, so
O is open.

Finally, suppose Oi, 1 ≤ i ≤ n is a finite collection of open subsets
of Rn, and let

E =
n

⋂

i=1

Oi

Suppose x ∈ E. Then x ∈ Oi, for each 1 ≤ i ≤ n. Since each Oi is
open, there is an ǫi for each of them with the property that

Bǫi
(x) ⊆ Oi

Let ǫ = min(ǫ1, ǫ2, . . . , ǫn). Then Bǫ(x) is contained in each of the Oi,

Bǫ(x) ⊆ Oi, 1 ≤ i ≤ n

and therefore Bǫ(x) ⊆ E. Since x was arbitrarily chosen, we can find
such an ǫ for any x ∈ E, so by definition E is open. ¤

Theorem 2.2.6 (8.32i). Suppose E ⊆ Rn. Then

E◦ ⊆ E ⊆ E

Proof. Part I: Eo ⊆ E

Let x ∈ Eo. We need to show x ∈ E. By defintion Eo is the union
of all open subsets of E. By hypothesis, x ∈ Eo, so x belongs to at
least one open subset of Ox of E. Since x ∈ Ox ⊆ E, then x ∈ E.
Because x was arbitrary, every x ∈ Eo belongs to E, so Eo ⊆ E. ¤

Proof. Part II: E ⊆ E

Now suppose x ∈ E. Let Fα be a closed set that contains E. Then
x ∈ E and E ⊆ Fα implies x ∈ Fα. Since Fα was arbitrarily chosen, x
belongs to every closed set F that contains E. So x belongs to every
closed set that contains E, and therefore to their intersection, E. Since
x was arbitrary, every element of E belongs to E, so E ⊆ E.

¤
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Theorem 2.2.7 (8.32ii). Suppose E ⊆ Rn, V is open, and V ⊆ E.
Then

V ⊆ E◦

Theorem 2.2.8 (8.32iii). If E ⊆ Rn, F is closed, and F ⊇ E.
Then

F ⊇ E

Proof. Let x be an element of Ē. By definition, x belongs to
the intersection of all closed sets that contain E. If x belongs to the
intersection, it belongs to every set in the intersection, ie, every closed
set that contains E. Therefore x ∈ F since x was arbitrary, every
element of Ē is in F and E ⊆ F

¤

Theorem 2.2.9 (8.36). Let E ⊆ Rn. Then

∂E = E \ E◦

Theorem 2.2.10 (8.37i). Let A,B ⊆ Rn. Then

(A ∪ B)◦ ⊇ A◦ ∪ B◦

Proof. Let x ∈ Ao∪Bo. Then either x ∈ OA ⊆ A or x ∈ OB ⊆ B.
In the first case, OA ⊆ A ⊆ A∪B so x belongs to an open set contained
in A ∪ B, therefore x ∈ (A ∪ B)o. A similar argument holds for the
case of x ∈ OB ⊆ B.

¤

Theorem 2.2.11 (8.37i). Let A,B ⊆ Rn. Then

(A ∩ B)◦ = A◦ ∩ B◦

Proof. Suppose ∈ Ao ∩ Bo. Then x ∈ OA for some OA ⊆ A and
x ∈ OB for some OB ⊆ B. Therefore, x ∈ OA ∩OB. By the properties
of a topology, finite intersections of open sets are open, so OA ∩ OB is
open and in fact is an open set contained in A ∩ B. So, by definition,
x ∈ (A ∩ B)o.
Now, suppose x ∈ (A ∩ B)o. Then x ∈ OA∩B ⊆ A ∩ B by deinition.
But OA∩B ⊆ A ∩ B ⊆ A, so x ∈ OA∩B ⊆ A implies that x ∈ Ao. A
similar argument shows x ∈ Bo. So x ∈ Ao and x ∈ Bo implies that
x ∈ Ao ∩ Bo. ¤
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Theorem 2.2.12 (8.37ii). Let A,B ⊆ Rn. Then

A ∪ B = A ∪ B

Theorem 2.2.13 (8.37ii). Let A,B ⊆ Rn. Then

A ∩ B ⊆ A ∩ B

Proof. Supposed x ∈ A ∩ B.
Then x belongs to every closed set that contains A∩B. But A∩B ⊆ A,
so every closed set that contains A also contains A∩B. Therefore x is
in every closed set that contains A. Further concluding, x ∈ A.
By similar logic, x belongs to every closed set that contains A∩B. But
A ∩ B ⊆ B, so every closed set that contains B also contains A ∩ B.
Therefore x is in every closed set that contains B. Further concluding,
x ∈ B.
Therefore x ∈ A ∩ B, proving A ∩ B ⊆ A ∩ B. ¤

Theorem 2.2.14 (8.37iii). Let A,B ⊆ Rn. Then

∂(A ∪ B) ⊆ ∂A ∪ ∂B

Theorem 2.2.15 (8.37iii). Let A,B ⊆ Rn. Then

∂(A ∩ B) ⊆ ∂A ∩ ∂B



CHAPTER 3

Convergence in Rn

21



22 3. CONVERGENCE IN Rn

3.1. Limits of Sequences

Definition 3.1.1 (convergent sequence). Let {xk} be a sequence
of points in Rn. {xn} is said to converge to some point a ∈ Rn, called
the limit of xk, if and only if for every ǫ > 0, there is an N ∈ N such
that

k ≥ N implies ‖xk − a‖ < ǫ

In this case, we write xk → a as k → ∞ or a = limk→∞ xk.

Definition 3.1.2 (bounded sequence). Let {xk} be a sequence of
points in Rn. {xn} is said to be bounded if and only if there is an
M > 0 such that

‖xk‖ ≤ M for all k ∈ N

Definition 3.1.3 (Cauchy sequence). Let {xk} be a sequence of
points in Rn. {xn} is said to be Cauchy if and only if for every ǫ > 0,
there is an N ∈ N such that

k,m ≥ N imply ‖xk − xm‖ < ǫ

Definition 3.1.4 (separable set). E ⊂ Rn is said to be separable if,
there is an at most countable subset Z ⊆ E such that for every a ∈ E,
there is a sequence {xk} ∈ Z that converges to a.

Theorem 3.1.1. (9.2) Let a = (a1, a2, . . . , an) ∈ Rn and suppose
{

xk =
(

x
(1)
k , x

(2)
k , . . . , x

(n)
k

)}

k ∈ N

be a sequence in Rn. Then

xk → a as k → ∞
if and only if, for each j ∈ {1, 2, . . . , n}, the component sequence

x
(j)
k → aj as k → ∞
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Theorem 3.1.2. (9.3) Let

Qn = {x ∈ Rn : xj ∈ Q for j = 1, 2, . . . , n}
For each a ∈ Rn, there is a sequence xk ∈ Qn such that xk → a as
k → ∞.

Proof. Let a ∈ Rn = (a1, a2, . . . , an), ai ∈ R
There is a sequence q

(i)
k in Q that converges to ai for 1 ≤ i ≤ n.

By Theorem 3.1.1, each component sequence q
(i)
k → ai as k → ∞, so

the sequence qk → a in Rn. ¤

Theorem 3.1.3. Rn is separable.

Theorem 3.1.4. (9.4i) A sequence in Rn can have at most one
limit.

Theorem 3.1.5. (9.4ii) If {xk} is sequence in Rn that converges
to a as k → ∞, then every subsequence {xkj

} also converges to a as
j → ∞.

Proof. Let ǫ > 0 be given. By hypothesis, xk → Lx and yk → Ly,
so ∃N ∈ N such that ||xk − Lx|| < ǫ

2
and ||yk − Ly|| < ǫ

2
when k ≥ N .

But ||(xk + yk)− (Lx + Ly)|| = ||(xk −Lx) + (yk −Ly)|| ≤ ||xk −Lx|| −
||yk − Ly|| < ǫ

2
+ ǫ

2
= ǫ when k ≥ N . ¤

Theorem 3.1.6. (9.4iii) Every convergent sequence in Rn is bounded.
The converse of this statement is false.

Proof. If xk → a, then there exists an N ∈ N such that ||xk − a|| <
1 for all k ≥ N .
(Note we are theoretically letting ǫ = 1).
Now consider δi = ||x − a|| for i < i < N − 1.
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Let m = max (δi).
Then d(a, xi) ≤ m + 1 for all i ∈ N. Thus ||a − xi|| = δi ≤ m + 1.
But, ||xi − a|| ≥ ||x|| − ||a||.
So, ||x|| − ||a|| ≤ m + 1 ⇒ ||xi|| ≤ ||a|| + m + 1. ¤

Theorem 3.1.7. (9.4iv) Every convergent sequence in Rn is Cauchy.

Proof. Suppose xn is a convergent sequence in Rn, and let ǫ > 0
be given. By hypothesis, xN → L so ∃N ∈ N such that ‖xk − L‖ < ǫ

2
when k ≥ N .

‖xk − L‖ < ǫ

‖xk − xN‖ < ǫ

‖xk − L + L − xN‖ ≤ ‖xk − L‖ + ‖L − xN‖ ≤ ǫ

2
+

ǫ

2
= ǫ

¤

Theorem 3.1.8. (9.4va) If {xk} and {yk} are convergent sequence
in Rn, then

lim
k→∞

(xk + yk) = lim
k→∞

xk + lim
k→∞

yk

Proof. Let ǫ > 0 be given. By hypothesis, {xk} → Lx and {yk} →
Ly, so ∃N ∈ N such that ||xk−Lx|| ≤ ǫ

2
and ‖yk−Ly‖ ≤ ǫ

2
when k ≥ N .

But then for k ≥ N ,

‖(xk+yk)−(Lx+Ly)‖ = ‖(xk−Lx)+(yk−Ly)‖ ≤ ||xk−Lx||+||yk−Ly|| <
ǫ

2
+

ǫ

2
= ǫ

when k ≥ N . ¤

Theorem 3.1.9. (9.4vb) If {xk} is a convergent sequence in Rn

and α ∈ R, then

lim
k→∞

(αxk) = α lim
k→∞

xk
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Proof. Let ǫ > 0 be given. We need to find N ∈ N such that

‖αxk − αLx‖ < ǫ when k ≥ N.

By hypothesis, xk → Lx, so there exists N ∈ N such that

‖xk − Lx‖ <
ǫ

|α| when k > N

Then for k > N ,

‖αxk − αLx‖ = |α‖|xk − Lx‖ < |α| ǫ

|α| = ǫ

¤

Theorem 3.1.10. (9.4vc) If {xk} and {yk} are convergent sequence
in Rn, then

lim
k→∞

(xk · yk) = ( lim
k→∞

xk) · ( lim
k→∞

yk)

Theorem 3.1.11. If {xk} is convergent sequence in Rn, then

lim
k→∞

‖xk‖ = ‖ lim
k→∞

xk‖

Proof. Using the triangle inequality: ||x − y|| ≥ ||x|| − ||y||, we
say:

||xn − L|| ≥ ||xn|| − ||L||
⇒ ||xn − L|| + ||L|| ≥ ||xn|| ∀ n

Taking the limit:

lim
n→∞

||xn − L|| + lim
n→∞

||L|| ≥ lim
n→∞

||xn||

But, limn→∞ ||xn − L|| → 0, thus:

||L|| ≥ lim
n→∞

||xn||

Reversing, ||L − xn|| ≥ ||L|| − ||xn||
⇒ ||L − xn|| − ||L|| ≥ − ||xn||
⇒ ||L|| − ||L − xn|| ≤ ||xn||

Taking the limit:

lim
n→∞

||L|| − lim
n→∞

||L − xn|| ≤ lim
n→∞

||xn||
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Once again, limn→∞ ||L − xn|| → 0, so:

||L|| ≤ lim
n→∞

||xn||

Thus:

||L|| ≤ lim
n→∞

||xn|| ≤ ||L||
Concluding:

lim
n→∞

||xn|| = ||L||
¤

Theorem 3.1.12 (Bolzano-Weierstrass). (9.6) Every bounded se-
quence in Rn has a convergent subsequence.

Proof. By hypothesis, {xk} is bounded, so there exists an M > 0
such that ||xk|| ≤ M for all k ∈ N.

By Theorem 2.1.8, |xkj
| ≤ max(|xk1

|, |xk2
|, ..., |xkn

|) = ||x||∞ ≤ ||x||
for all k ∈ N. So each component sequence {xkj

} with k = 1, 2, 3, ...
and 1 ≤ j ≤ n, is bounded. Starting with {xk1

}, the sequence of first
components, by the Bolzano-Weierstrass Theorem in R, {xk1

} has a
convergent subsequence, {xk1l

}. Starting with each of the {xk}, ele-
ments whose first component xk1

is in the convergent subsequence of
first components, choose a subsequence so that the sequence of second
elements is convergent. Continue in this fashion, constructing subse-
quences of {xk} for which the first, second, and third components form
convergent sequences in R, then the first, second, third, and fourth,
and so on until each component forms a convergent sequence. By an
earlier theorem, this means the vector subsequence converges.

¤

Theorem 3.1.13. (9.6) A sequence {xk} in Rn is convergent if and
only if it is Cauchy.

Proof. Suppose {xn} is Cauchy.
Given ǫ = 1, let us choose N ∈ N such that

||xn − xm|| < 1 for all n,m > N

By the Triangle Inequality,

||xn|| − ||xm|| ≤ ||xn − xm|| < 1
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⇒ ||xn|| ≤ 1 + ||xm||
Therefore, the sequence {xn} is bounded by

max{||x1|| , ||x2|| , . . . , ||xN − 1|| , 1 + ||xm||}.
By the Bolzano-Weierstrass Theorem, we conclude {xn} has a conver-
gent subsequence. So:

{xnk
} ⇒ ∃ K ∈ N such that ||xnk

− L|| <
ǫ

2
when k ≥ K

||xm − xnk
|| <

ǫ

2
for m,nk > N

Thus:

||xm − L|| ≤ ||xm − xnk
||+||xnk

− L|| <
ǫ

2
+

ǫ

2
= ǫ when k > K and m > N

Therefore, we conclude xn → L.

The converse has been established in Theorem 3.1.7. ¤

Theorem 3.1.14. (9.7) Let {xk} be a sequence in Rn. Then xk → a
if and only if for every open set V that contains a, there is an N ∈ N
such that

k ≥ N implies xk ∈ V

Theorem 3.1.15. (9.8) E ⊆ Rn. Then E is closed if and only if
E contains all of its limit points, that is, if and only if

xk ∈ E and xk → a implies a ∈ E

Proof. Let F ⊆ Rn be a closed set and L a limit point of F . Then
by definition, every open ball Bǫ(L) contains points of F other than
L. This implies that for every ǫ > 0, Bǫ(L) * F x. By hypothesis,
F is closed, so F c is open, and by definition if L ∈ F c, ∃ > 0 such
that Bǫ(L) ⊆ F x, contradicting that L is a limit point of F , therefore,
L ∈ F .

If F contains its limit points, then F is closed. [L is a limit point
of F ] ⇒ (L ∈ F )] ⇒ F is closed

P ⇒ Q ≡ P ∨ Q

(P ⇒ Q) ≡ P ∧ Q
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F c is not open ⇒ (L is a limit point of F and L /∈ F ). Exists for
some L ∈ F c, for which every neighborhood of L contains a point of
F cc

= F . For some L ∈ F c, L is a limit point of F . ¤
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3.2. The Heine-Borel Theorem

Definition 3.2.1 (open covering). An open covering of E ⊆ Rn is
a collection of sets {Vα}α∈A such that each Vα is open and

E ⊆
⋃

α∈A

Vα

Definition 3.2.2 (finite subcovering). If {Vα}α∈A is an open cov-
ering of E ⊆ Rn, a finite subcovering is a finite collection

An = {α1, α2, . . . , αn} such that E ⊆
n

⋃

i=1

Vαj

Definition 3.2.3 (compact set). A set E ⊆ R is compact if and
only if every open covering of E has a finite subcovering.

Lemma 3.2.1 (Borel covering lemma). (9.9) Let E be a closed,
bounded subset of Rn. If r : E → (0,∞) is an arbitrary function, then
there exist finitely many points y1, . . . , yn such that

E ⊆
n

⋃

j=1

Br(yj)(yj)

Theorem 3.2.1 (Heine-Borel). (9.11) E ⊆ Rn is compact if and
only if it is closed and bounded.

Proof. Suppose E ⊆ Rn is closed and bounded, and Oα, α ∈ A,
is an open cover of E. By hypothesis, Oα, α ∈ A, is an open cover of
E, so every element of E belongs to

⋃

α∈A Oα. Since
⋃

α∈A Oα is open
set itself, there is an ǫy > 0 for every y ∈ E such that

Bǫy
⊆

⋃

α∈A

Oα and E ⊆
⋃

y∈E

Bǫy
(y)
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Since r : y → ǫy is a function from E to (0,∞), By the Borel covering
lemma, there exist a finite collection of the Bǫy

(y) such that:

E ⊆
n

⋃

i=1

Bǫy
(y)

Since each Bǫy
(y) ⊆ Oα for some α ∈ A there is a finite collection of

Oα’s that
n

⋃

i=1

Oαi
⊇

n
⋃

i=1

Bǫy
(yi) ⊇ E

. Since Oα, α ∈ A, was arbitrary, every open cover of E has a finite
subcover, and by definition, E is compact. ¤
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3.3. Limits of Functions

Definition 3.3.1 (function convergence). (9.14) Let n,m ∈ N and
a ∈ Rn, and let V be an open set that contains a. If f is a function

f : V \ {a} → Rm

we say that f(x) converges to L as x approaches a if and only if, for
every ǫ > 0 there is a δ > 0 (which in general depends on ǫ, f , V , and
a) such that

0 < ‖x − a‖ < δ implies ‖f(x) − L‖ < ǫ

When this is the case, we write

f(x) → L as x → a or L = lim
x→a

f(x)

and call L the limit of f as x approaches a.

Definition 3.3.2 (iterated limits). Let V be an open subset of R2

and (a, b) ∈ V . The iterated limits of f at (a, b) are defined to be:

lim
x→a

lim
y→b

f(x, y) = limx→a

(

lim
y→b

f(x, y)

)

and

lim
y→b

lim
x→a

f(x, y) = limy→b

(

lim
x→a

f(x, y)
)

Theorem 3.3.1. (9.15i) Suppose a ∈ Rn, V is an open set that
contains a, and f, g : V \ {a} → Rm. If

f(x) = g(x) for all x ∈ V \ {a}, and lim
x→a

f(x) exists

then
lim
x→a

g(x) exists and lim
x→a

f(x) = lim
x→a

g(x)



32 3. CONVERGENCE IN Rn

Theorem 3.3.2. (9.15ii) [sequential characterization of limits] Sup-
pose a ∈ Rn, V is an open set that contains a, and f : V \ {a} → Rm.
Then

lim
x→a

f(x) = L if and only if f(xk) → L as k → ∞

for every sequence xk ∈ V \ {a} that converges to a as k → ∞.

Proof. First we can assume: f(x) → L as x → a for any sequence
{xn} with xn → a as n → ∞.

⇒ Proof

For any ǫ > 0, ∃ N such that

|f(xn) − L| < ǫ when n > N

By our given information, we know ∃ N ∈ N such that

|xn − a| < δ when n ≥ N

Then for n ≥ N, |xn − a| < δ.
By hypothesis, xn ∈ V \{a}, so xn 6= a, and 0 < |xn − a| < δ.
By hypothesis, f(x) → L as x → a, so f(xn) → L as n → ∞ by
definition.
Since this is true for each n ≥ N , we have:

lim
n→∞

f(xn) → L

¤

Theorem 3.3.3. (9.15iiia) If f(x) and g(x have limits as x → a,
then

lim
x→a

(f + g)(x) = lim
x→a

f(x) + lim
x→a

g(x)

Proof. ∀ǫ > 0, ∃δ > 0 such that:

||(f+g)(x)−(L+M)|| = ||(f(x)+g(x)−L−M || = ||(f(x)−L)+(g(x)−M)|| < ǫ when ||x−a|| <

By triangle inequality,

||(f(x) − L) + (g(x) − M)|| ≤ ||f(x) − L|| + ||g(x) − M ||
So, choose δ such that

||f(x) − L|| <
ǫ

2
and ||g(x) − M || ≤ ǫ

2
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Then, for ||x − a|| < δ,

||(f + g)(x) − (L + M)|| ≤ ||f(x) − L|| + ||g(x) − M || <
ǫ

2
+

ǫ

2
= ǫ

¤

Theorem 3.3.4. (9.15iiib) If f(x) has a limit as x → a, then

lim
x→a

(αf)(x) = α lim
x→a

f(x)

Theorem 3.3.5. (9.15iiic) If f(x) and g(x have limits as x → a,
then

lim
x→a

(f · g)(x) = lim
x→a

f(x) · lim
x→a

g(x)

Theorem 3.3.6. (9.15iiid) If f(x) has a limit as x → a, then

‖ lim
x→a

(f)(x)‖ = lim
x→a

‖f(x)‖

Theorem 3.3.7. (9.15iv) [squeeze theorem for functions] Suppose
f, g, h : V \ {a} → R and

g(x) ≤ h(x) ≤ f(x) for all x ∈ V \ {a}
If

lim
x→a

f(x) = lim
x→a

g(x) = L

then the limit of h as x approaches a also exists, and

lim
x→a

h(x) = L
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Theorem 3.3.8. (9.15v) Suppose U ⊂ Rm is open, L ∈ U , and

h : U \ {L} → Rp for some p ∈ N

If
lim
x→a

g(x) = L and lim
y→L

h(y) = M

then
lim
x→a

(h ◦ g)(x) = M

Theorem 3.3.9. (9.16) Let a ∈ Rn, let V be an open set that
contains a, and suppose

f = (f1, . . . , fm) : V \ {a} → Rm

then
lim
x→a

f(x) = L = (L1, . . . , Lm)

exists in Rm if and only if

lim
x→a

fj(x) = Lj

exists for j = 1, . . . ,m
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4.1. Introduction

Definition 4.1.1 (metric space). A metric space is pair (X, ρ)
consisting of a set X together with a function ρ : X×X → R called the
metric of X which satisfies the following properties for all x, y, z ∈ X:

positive definite ρ(x, y) ≥ 0 with ρ(x, y) = 0 ⇔ x = y
symmetric ρ(x, y) = ρ(y, x)
triangle inequality ρ(x, y)leqρ(x, z) + ρ(z, y)

(Note: by definition, ρ(x, y) is finite for all x, y ∈ X.

Definition 4.1.2 (open ball). The open ball in (X, ρ) with center
a and radius r is the set

Br(a) = {x ∈ X : ρ(x, a) < r

Definition 4.1.3 (closed ball). The closed ball in (X, ρ) with center
a and radius r is the set

Br(a) = {x ∈ X : ρ(x, a) ≤ r

Definition 4.1.4 (open set). A set V ⊆ X is said to be open if
and only if for every x ∈ V , there is an ǫ > 0 such that

Bǫ(x) ⊆ V

Definition 4.1.5 (closed set). A set E ⊆ X is said to be closed if
and only if

Ec = X \ E is open

Definition 4.1.6 (convergent sequence). Let {xn} be a sequence in
X. We say that {xn} converges (in X) if there is a point a ∈ X called
the limit of xn such that for every epsilon > 0, there is an N ∈ N such
that

ρ(xn, a) < epsilon whenever n ≥ N
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Definition 4.1.7 (Cauchy sequence). Let {xn} be a sequence in
X. We say that {xn} is Cauchy if for every epsilon > 0, there is an
N ∈ N such that

ρ(xn, xm) < epsilon whenever n,m ≥ N

Definition 4.1.8 (bounded sequence). Let {xn} be a sequence in
X. We say that {xn} is bounded if there is an M > 0 and a point
b ∈ X such that

ρ(xn, b) ≤ M for all n ∈ N

Definition 4.1.9 (complete metric space). A metric space (X, ρ)
is said to be complete if every Cauchy sequence in X converges to some
point in X.

Theorem 4.1.1 (Example 10.2). Every Euclidean space Rn is a
metric space (Rn, ρ) where ρ(x, y) = ‖x−y‖ is called the ”usual metric
on Rn.

Theorem 4.1.2 (Example 10.3). R is a metric space (R, σ) where

σ(x, y) =

{

0 x = y
1 x 6= y

σ is called the discrete metric.

Proof. Need to show: σ is a metric.
1) Let x, y ∈ R. By defintion,

σ(x, y) =

{

0 if x = y
1 if x 6= y

So, σ(x, y) ≥ 0 for all x, y ∈ R, and
σ(x, y) = 0 iff x = y.

2) σ(x, y) = σ(y, x)
Case 1. If x = y, σ(x, y) = 0 = σ(y, x)
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Case 2. If x 6= y, σ(x, y) = 1 = σ(y, x, )

3) For x, y, z ∈ R, σ(x, y) ≤ σ(x, z) + σ(z, y)

Case 1. x = y, x 6= z, σ(x, y) = 0 ≤ σ(x, z) + σ(y, z) = 1 + 1

Case 2. x = y = z, σ(x, y) = 0 = σ(x, z) + σ(y, z) = 0 + 0

Case 3. x 6= y, σ(x, y) = 1 Either x = z or x 6= z. If x = z, and
x 6= y, y 6= z, so σ(x, z) + σ(z, y) = 0 + 1, 1 ≤ 1.

If x 6= z and x 6= y, σ(x, y) = 1 ≤ σ(x, z) + σ(y, z) =

{

1 if y = z
2 if y 6= z

¤

Theorem 4.1.3 (Example 10.4). If (X, ρ) is a metric space and
E ⊆ X, then (E, ρ) is a metric space.

Theorem 4.1.4 (Example 10.5). (Q, ρ) is a metric space with ρ(x, y) =
|x − y|.

Proof. Let x, y, z ∈ Q. We need to show |x − y| is a metric.
1) |x − y| ≥ 0 by the definition of absolute value. |x − y| = 0 only

if x = y, again by property of absolute value:

|x − y| =

{

x − y if x − y ≥ 0
y − x if x − y < 0

This can only be zero if x − y = 0 ⇒ x = y.
2) |x− y| = |y − x|. By definition of absolute value, |a| = | − a|, so

|x − y| = |y − x|
3) By the triangle inequality for real numbers, |x − y| ≤ |x − z| +

|z − y|
¤

Theorem 4.1.5 (Example 10.6). Let C[a, b] be the set of continuous
real-valued function on [a, b], that is, the collection of all functions f :
[a, b] → R continuously and let

‖f‖ = sup
x∈[a,b]

|f(x)|
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Then C[a, b], ρ) is a metric space with ρ(f, g) = ‖f−g‖ for f, g ∈ C[a, b].

Proof. Note: Definition of a metric: (X, ρ) : X × X → R such
that ∀x, y ∈ X :

1)ρ(x, y) ≥ 0 with ρ(x, y) = 0 ↔ x = y

2)ρ(x, y) = ρ(y, x)

3)ρ(x, y) ≤ ρ(x, z) + ρ(z, y)

Let X = C[a, b] with ρ(f, g) = ||f − g|| and ||f || = sup |f(x)|.
2) Since |f − g| = |g − f |∀x ∈ [a, b], sup |f − g| = sup |g − f |. By
definition, this implies ρ(f, g) = ρ(g, f).
1) |f − g| ≥ 0∀x ∈ [a, b]. If f = g, |f − g| = |0| = 0∀x ∈ [a, b], so
supx∈[a,b] |f − g| = 0. Suppose ρ(f, g) = 0. This implies sup |f − g| = 0.
By definition of absolute values, 0 ≤ sup |f − g| = 0.0 ≤ |f − g| = 0,
implying f = g∀x ∈ [a, b].
3) sup |f − g| ≤ sup |f − h| + sup |h − g|∀x ∈ [a, b]. We know that
|f − g| = |f − h + h − g| ≤ |f − h| + |h − g|∀x ∈ [a, b]. This implies
sup |f −g| ≤ sup(|f −h|+ |h−g|) ≤ sup |f −h|+sup |h−g|. Therefore
ρ(f, g) ≤ ρ(f, h) + ρ(h, g).

¤

Theorem 4.1.6 (Example 10.9a). Every open ball in (X, ρ) is open.

Theorem 4.1.7 (Example 10.9b). Every closed ball in (X, ρ) is
closed.

Theorem 4.1.8 (Example 10.10). Singleton sets (sets consisting of
a single element a ∈ X) are closed.

Theorem 4.1.9 (Remark 10.11). In an arbitrary metric space (R, ρ),
X and ∅ are both open and closed.
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Theorem 4.1.10 (Example 10.12). Every subset of the discrete
space (R, σ) is both open and closed.

Theorem 4.1.11 (Theorem 10.14i). A sequence in a metric space
can have at most one limit.

Theorem 4.1.12 (Theorem 10.14ii). If xn ∈ X converges to a,
every subsequence xnk

also converges to a.

Theorem 4.1.13 (Theorem 10.14iii). Every convergent sequence in
a metric space is bounded.

Theorem 4.1.14 (Theorem 10.14iv). Every convergent sequence in
a metric space is Cauchy.

Theorem 4.1.15 (Theorem 10.15). A sequence xn ∈ X converges
to a if and only if for every open set V that contains a, there is an
N ∈ N such that

xn ∈ V whenever n ≥ N

Proof. ⇒ By hypothesis, xn → a. Let V be an open set that
contains a. By definition of an open set, ∃ǫ > 0 such that Bǫ(a) ⊆ V .
Since xn → a as n → ∞, there is an N ∈ N such that ρ(xn, a) < ǫ
when n ≥ N . This implies xn ∈ Bǫ(a) when n ≥ N .

⇐ Let ǫ > 0 be given. Let V be an open set with a ∈ V . By
definition, ∃δ > 0 such that Bδ(a) ⊆ V . Then Bδ(a) is an open set that
contains a, so there is an N ∈ N such that for n ≥ N =⇒ xn ∈ Bδ(a).
Likewise, B δ

2

(a) is an open set that contains a, so there is an N ∈ N
such that n ≥ N =⇒ xn ∈ B δ

2

(a) when n → ∞. Continuing in this

fashion to xn ∈ B δ
2

k(a) when n ≥ Nk with k ≥ log2
δ
ǫ
, we have δ

ǫ

k
< ǫ.

So, xn ∈ B δ
2

k(a) when n ≥ Nk, implying ρ(xn, a) < δ
2

k
< ǫ.
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¤

Theorem 4.1.16 (Theorem 10.16). A subset E of the metric space
(X, ρ) is closed if and only if the limit of every convergent sequence in
E belongs to E.

Theorem 4.1.17 (Remark 10.17). The discrete metric space (R, σ)
contains bounded sequences with no convergent subsequence.

Proof.

(R, σ)

σ(x, y) =

{

0 if x = y
1 if x 6= y

In S, there exist bounded sequences with no convergent subsequence.
Let x ∈ R. For any y ∈ R, with y 6= x, σ(x, y) = 1. Therefore, every
sequence is bounded because σ(xn, x) ≤ 1. Let {xn} = {1, 2, 3, 4, ...} =
{N} for any n ∈ N, if ǫ = 1

2
, there does not exist any point a and

integer N with σ(xn, a) < 1
2

when n ≥ N . Therefore, {xn} does not
converge. The same argument holds for any subsequence {xnk

}.
¤

Theorem 4.1.18 (Remark 10.18). The metric space (Q, ρ) contains
Cauchy sequences that do not converge.

Proof. By counterexample, the sequence 1, 1.4, 1.414, 1.4142, 1.41421, . . .
in R converges to

√
2. But,

√
2 /∈ Q. So the limit of this sequence does

not belong to Q and we say it does not converge. ¤

Theorem 4.1.19 (Theorem 10.21). A subset E of a complete metric
space (X, ρ) is a complete metric space if and only if E is closed.
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4.2. Cluster Points and Limits

Definition 4.2.1 (cluster point). A point a ∈ X is said to be a
cluster point of X if and only if Bδ(a) contains infinitely many points
(of X) for each δ > 0.

Definition 4.2.2 (function limit). Let a be a cluster point of X
and f : x \ {a} → Y . Then f is said to converge to L as x approaces
a if and only if, for every ǫ > 0, there is a δ > 0 such that

0 < rho(x, a) < δ ⇒ τ(f(x), L) < ǫ

f is said to be continuous on E if it is continuous at every x ∈ E.

Theorem 4.2.1 (10.26i). Let a be a cluster point of X and f, g :
X \ {a} → Y . If f(x) = g(x) for all x ∈ X \ {a}, and f(x) has a limit
as x → a, then g(x) also has a limit as x → a and

lim
x→a

f(x) = lim
x→a

g(x)
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4.3. Compactness

Definition 4.3.1 (compactness). A subset H of a metric space X
is said to be compact if and only if every open covering of H has a
finite subcover.

Definition 4.3.2 (separable). A metric space X is said to be sep-
arable if and only if it contains a countable dense subset (i.e., iff there
is a countable subset Z of X such that for every point A ∈ X there is
a sequence xk ∈ Z such that xk → a as k → ∞.

Theorem 4.3.1 (Remark 10.43). The empty set and all finite sub-
sets of a metric space are compact.

Proof. Part 1 ∅ ⊆ X, i.e., (X, ρ).
Let O ⊆ ∪α∈AOα be any non-empty collection of open subsets of X.
Pick any element Oα. Then, ∅ ⊆ Oα, so Oα is a finite open cover of
∅, with one element. Since we can do this for any open cover of ∅, the
empty set, ∅, is compact.

Part 2 Finite Subsets
Let E be a finite subset of X, and 0 = ∪α∈AOα an open cover. That
is, E ⊆ ∪α∈AOα. Let xi for i = 1, 2, 3, . . . , N be the finite elements of
E. Every xi belongs to O, so every xi belongs to at least one Oα. Let
x1 ∈ Oα1

, x2 ∈ Oα2
, . . . , xN ∈ OαN

. Then ∪N
i=1Oαi

is a finite subcover
containing E. Since O was arbitrary, we can find such a subcover for
any open cover.

¤

Theorem 4.3.2 (Remark 10.44). In a metric space a compact set
is always closed.

Theorem 4.3.3 (Remark 10.45). A closed subset of a compact set
is compact.
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Theorem 4.3.4 (10.46). Let H be a subset of a metric space X. If
H is compact, then H is closed and bounded.

Theorem 4.3.5 (Remark 10.47). The converse of the previous the-
orem is false.

Theorem 4.3.6 (10.49 Lindelof). Let E be a subset of a sepa-
rable metric space X. If {Vα}α∈A is a collection of open sets and
E ⊆ ⋃

α∈A Vα then there is a countable subset {α1, α2, . . .} of A such
that

E ⊆
∞
⋃

k=1

Vαk

Theorem 4.3.7 (10.50 Heine-Borel). Let X be a separable metric
space which satisfies the Bolzano-Weierstrass Property, and H a subset
of a X. Then H is compact if and only if it is closed and bounded.
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4.4. Function Algebras and the Stone-Weierstrass Theorem

Definition 4.4.1 (uniform continuity). Let X be a metric space,
E a nonempty subset of X, and f : E → Y . Then f is said to be
uniformly continuous on E if and only if given ǫ > 0 there is a δ > 0
such that

ρ(x, a) < δ and x, a ∈ E imply τ(f(x), f(a)) < ǫ

Definition 4.4.2 (algebra). A subset A of C(X) is said to be a
(real function) algebra in C(X) if and only if

• ∅ 6= A ⊆ C(X)
• If f, g ∈ A, then f + g and fg belong to A
• If f ∈ A and c ∈ R, then cf ∈ A.

Definition 4.4.3 (uniformly closed). A ⊆ C(X) is said to be (uni-
formly) closed if and only if for every sequence fn ∈ A satisfying

‖fn − f‖ → 0 as n → ∞ ⇒ lim fn = f ∈ A

Definition 4.4.4 (uniformly dense). A ⊆ C(X) is said to be (uni-
formly) dense if and only if given ǫ > 0 and f ∈ C(X), there is a
function

g ∈ A such that ‖g − f‖ < ǫ

Definition 4.4.5 (separates points). A ⊆ C(X) separates points if
and only if, given x, y ∈ X with x 6= y, there exists an f ∈ A such that

f(x) 6= f(y)

Theorem 4.4.1 (10.52). If E is a compact subset of X and f :
X → Y . Then f is uniformly continuous on E if and only if it is
continuous on E.

Theorem 4.4.2 (10.58). Suppose f : X → Y . Then f is continuous
if and only if f−1(V ) is open in X for every open V ⊆ Y .

Theorem 4.4.3 (10.61). If H is compact in X and f : H → Y is
continuous on H, then f(H) is compact in Y .
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Theorem 4.4.4 (10.63 Extreme Value Theorem). Let H be a nonempty,
compact subset of a metric space X. If f : H → R is continuous, then

M = sup{f(x) : x ∈ H} and m =

∫

{f(x) : x ∈ H}

are finite real numbers and there exist points xM and xm in H such
that

M = f(xM) and m = f(xm)

Theorem 4.4.5 (10.64). If H is a compact subset of X and f :
H → Y is 1 − 1 and continuous, then f−1 is continuous on f(H).

Theorem 4.4.6 (10.69 Stone-Weierstrass). Suppose X is a compact
metric space. If A is an algebra in C(X) that separates the points of
X and contains the constant functions, then A is uniformly dense in
C(X)


