## 1. ASSIGNMENT 8

1.1. Problem 1. Use definition 2.14 to prove that the following sequence diverges to $\infty$ or $-\infty$ :

$$
x_{n}=n^{2}-n
$$

1.2. Problem 2. Prove that the following sequence converges to zero:

$$
x_{n}=\frac{\sin \left(\ln n+n^{5}+e^{n^{2}}\right)}{n}
$$

1.3. Problem 3. Prove that if $x_{n}$ is a sequence of positive real numbers that converges to some real number $x$, then

$$
\sqrt{x_{n}} \rightarrow \sqrt{x} \quad \text { as } \quad n \rightarrow \infty
$$

(hint: use (8) of section 1.2.1 for the case $x=0$ )
1.4. Problem 4. Prove that for any real number $x$, there is a sequence $r_{n}$ of rational numbers that converges to $x$.

You may use Theorem 1.18 (density of rationals). This means, for example, there is a sequence of rational numbers whose limit is $\sqrt{2}$.

