1. ASSIGNMENT 5

1.1. Problem 1. Prove the following statement, or give a counterexample showing it is false: If $E_{1}, E_{2}, E_{3}, \ldots$ is a sequence of finite sets and

$$
E:=E_{1} \times E_{2} \times E_{3} \times \cdots=\left\{\left(x_{1}, x_{2}, x_{3}, \ldots\right): x_{j} \in E_{j}\right\}
$$

that is, E is the set of all sequences with $x_{1} \in E_{1}, x_{2} \in E_{2}$, etc., then E is countable.
1.2. Problem 2. Prove that if $x_{1}>2$ and

$$
x_{n+1}=1+\sqrt{x_{n}-1} \quad \text { for all } n \in \mathbb{N}
$$

then

$$
2<x_{n+1}<x_{n} \quad \text { is true for all } n \in \mathbb{N}
$$

1.3. Problem 3. Prove that $2^{n}+3^{n}$ is a multiple of 5 for every odd $n \in \mathbb{N}$.
1.4. Problem 4. Prove that

$$
2 n+1<2^{n}, \quad n=3,4,5, \ldots
$$

