1. ASSIGNMENT 2

1.1. Problem 1. Define the positive part of $a \in \mathbb{R}$ by

$$
a^{+}:=\frac{|a|+a}{2}
$$

and the negative part of a by

$$
a^{-}:=\frac{|a|-a}{2}
$$

prove that

$$
a^{+}=\left\{\begin{array}{lll}
a & \text { if } & a \geq 0 \\
0 & \text { if } & a \leq 0
\end{array} \quad \text { and } \quad a^{-}=\left\{\begin{array}{lll}
0 & \text { if } & a \geq 0 \\
-a & \text { if } & a \leq 0
\end{array}\right.\right.
$$

1.2. Problem 2. Let $a, b \in \mathbb{R}$. Prove that if

$$
a>2 \quad \text { and } \quad b=1+\sqrt{a-1}
$$

then $2<b<a$.
1.3. Problem 3. If $a, b \in \mathbb{R}$, the arithmetic mean of a and b is

$$
A(a, b)=\frac{a+b}{2}
$$

and if $a, b \in[0, \infty)$ the geometric mean of a and b is

$$
G(a, b)=\sqrt{a b}
$$

Prove that if $0 \leq a \leq b$,

$$
a \leq G(a, b) \leq A(a, b)
$$

1.4. Problem 4. Prove that the sum of a rational number and an irrational number is always irrational.

