1. ASSIGNMENT 12

1.1. Problem 1. Prove the following statement if it is true, otherwise provide a counterexample:

If
$\lim _{x \rightarrow a^{+}} f(x)=0 \quad$ and $\quad g(x) \geq 1 \quad \forall x \in \mathbb{R} \quad$ then $\quad \frac{g(x)}{f(x)} \rightarrow \infty$ as $x \rightarrow a^{+}$
1.2. Problem 2. Prove the following statement if it is true, otherwise provide a counterexample:

If P and Q are polynomials of degree n, there is an $L \in \mathbb{R}$ such that

$$
\lim _{x \rightarrow \infty} \frac{P(x)}{Q(x)}=\lim _{x \rightarrow-\infty} \frac{P(x)}{Q(x)}=L
$$

1.3. Problem 3. Use the definition of a limit directly (not limit theorems) to prove that the limit

$$
\lim _{x \rightarrow 0^{-}} \frac{\sqrt{x^{2}}}{x}
$$

exists. What is the value of the limit?
1.4. Problem 4. Prove the following theorem: If
$f(x) \geq g(x) \forall x \in \mathbb{R} \quad$ and $\quad g(x) \rightarrow \infty$ as $x \rightarrow a \quad$ then $\quad f(x) \rightarrow \infty$ as $x \rightarrow a$

