1. ASSIGNMENT 11

1.1. Problem 1. Prove the following theorem:

Suppose $a \in \mathbb{R}$ and f, g, and h are real-valued functions defined everywhere on $I \backslash\{a\}$. Then if

$$
f(x) \leq g(x) \leq h(x) \quad \text { for } \quad x \in I \backslash\{a\}
$$

and

$$
\lim _{x \rightarrow a} f(x)=L=\lim _{x \rightarrow a} h(x)
$$

then

$$
\lim _{x \rightarrow a} g(x)=L
$$

1.2. Problem 2. Prove the following theorem:

Suppose $a \in \mathbb{R}$ and f and g are real-valued functions defined everywhere on $I \backslash\{a\}$. Then if

$$
f(x) \leq g(x) \quad \text { for } \quad x \in I \backslash\{a\}
$$

and

$$
\lim _{x \rightarrow a} f(x) \text { and } \quad \lim _{x \rightarrow a} g(x) \quad \text { exist }
$$

then

$$
\lim _{x \rightarrow a} f(x) \leq \lim _{x \rightarrow a} g(x)
$$

1.3. Problem 3. Prove that

$$
\lim _{x \rightarrow 0} \sin \frac{1}{x} \text { does not exist }
$$

(Hint: You can prove this using a strategy based on the remark at the bottom of Page 70)

1.4. Problem 4. Prove the following theorem:

Suppose $a \in \mathbb{R}$ and f and g are real-valued functions defined everywhere on $I \backslash\{a\}$. Then if there is an $M \in \mathbb{R}$ such that

$$
|g(x)| \leq M \quad \text { for } \quad x \in I \backslash\{a\}
$$

and

$$
\lim _{x \rightarrow a} f(x)=0
$$

then

$$
\lim _{x \rightarrow a} f(x) \cdot g(x)=0
$$

