1. Assignment 10

1.1. **Problem 1.** Suppose $E \subset \mathbb{R}$. A point $a \in \mathbb{R}$ is called a **cluster** point of *E* if for every r > 0,

 $E \cap (a - r, a + r)$ contains infinitely many points

Prove that every bounded infinite subset of $\mathbb R$ has at least one cluster point.

1.2. **Problem 2.** A subset $E \subset \mathbb{R}$ is said to be sequentially compact if and only if every sequence $x_n \in E$ has a convergent subsequence whose limit is in E.

Show that every closed bounded interval [a, b] with $a \leq b$ is sequentially compact.

1.3. **Problem 3.** a) Prove that there are bounded intervals in \mathbb{R} that are not sequentially compact.

b) Prove that there are closed intervals in \mathbb{R} that are not sequentially compact.

1.4. **Problem 4.** Suppose x_n and y_n are Cauchy sequences. Without using Theorem 2.29, prove that $x_n + y_n$ is Cauchy.