
Random Sample
Definition: The random variables

X1, X2, . . . , Xn

are said to form a random sample of size n if:

Each Xi is independent of the others

Each Xi has the same probability distribution

Sampling Distributions – p. 1/11



Random Sample
Definition: The random variables

X1, X2, . . . , Xn

are said to form a random sample of size n if:

Each Xi is independent of the others

Each Xi has the same probability distribution

These conditions also imply that the expected values and
variances of the random variables are the same:

E(Xi) = µ for each Xi

V (Xi) = σ2 for each Xi
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Random Sample
Regardless of what the exact probability distribution is, the
following is true:

If

x =

∑

n

i=1
xi

n
= the sample mean

then
E(x) = µ = E(Xi) for all i
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Random Sample
Regardless of what the exact probability distribution is, the
following is true:

If

x =

∑

n

i=1
xi

n
= the sample mean

then
E(x) = µ = E(Xi) for all i

That is, the expected value of the sample mean E(x) is the
same as the expected value of each of the Xi.
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Random Sample
Regardless of what the exact probability distribution is, the
following is true:

If

x =

∑

n

i=1
xi

n
= the sample mean

then
E(x) = µ = E(Xi) for all i

That is, the expected value of the sample mean E(x) is the
same as the expected value of each of the Xi.

The above statement is true for a random sample from a
distribution for which E(Xi) exists. There are pathological
distributions for which E(Xi) does not exist but they are
rare.
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Random Sample
Again regardless of what the exact probability distribution
is, the following is true:

If
V (x) = variance of the sample mean

then

V (x) = σ2

x =
σ2

n
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Random Sample
Again regardless of what the exact probability distribution
is, the following is true:

If
V (x) = variance of the sample mean

then

V (x) = σ2

x =
σ2

n

That is, the variance of the sample mean V (x) is 1/n times
the variance of each of the Xi.
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Random Sample
Again regardless of what the exact probability distribution
is, the following is true:

If
V (x) = variance of the sample mean

then

V (x) = σ2

x =
σ2

n

That is, the variance of the sample mean V (x) is 1/n times
the variance of each of the Xi.

Note that V (x) gets smaller as the sample size n increases.
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Random Sample
Again regardless of what the exact probability distribution
is, the following is true:

If
V (x) = variance of the sample mean

then

V (x) = σ2

x =
σ2

n

That is, the variance of the sample mean V (x) is 1/n times
the variance of each of the Xi.

Note that V (x) gets smaller as the sample size n increases.

As before, we note that the variance V (Xi) of each Xi must
exists for this to hold.
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Normal Population Random Sample
Proposition: If the random sample is from a normal
population with mean µ and standard deviation σ,

Xi ∼ N(µ, σ), i = 1, 2, . . . , n

That is, if each Xi has a normal or bell curve distribution,
then the sample mean x also has a normal distribution:

x ∼ N

(

µ,
σ
√

n

)
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Normal Population Random Sample
Proposition: If the random sample is from a normal
population with mean µ and standard deviation σ,

Xi ∼ N(µ, σ), i = 1, 2, . . . , n

That is, if each Xi has a normal or bell curve distribution,
then the sample mean x also has a normal distribution:

x ∼ N

(

µ,
σ
√

n

)

It should be emphasized that mean and standard deviation
of x are:

E(x) = µ

σx = σ/
√

n

Sampling Distributions – p. 4/11



Central Limit Theorem
What if the underlying population for the random sample
does not have a normal distribution?

It turns out that regardless of the underlying distribution, x
is approximately normally distributed.
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Central Limit Theorem
What if the underlying population for the random sample
does not have a normal distribution?

It turns out that regardless of the underlying distribution, x
is approximately normally distributed.

The larger the sample, the closer the actual distribution of x
is to a normal distribution.
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Central Limit Theorem
What if the underlying population for the random sample
does not have a normal distribution?

It turns out that regardless of the underlying distribution, x
is approximately normally distributed.

The larger the sample, the closer the actual distribution of x
is to a normal distribution.

The practical importance of this theorem cannot be
overstated.

It means that instead of having to develop separate tables
and procedures for each possible distribution, we can treat
the mean of any sufficiently large random sample as if it
were that of a sample from a normal population.
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Central Limit Theorem
Like many things in statistics, opinions vary on how large a
sample is needed to treat the sample mean as a normal
random variable.
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Central Limit Theorem
Like many things in statistics, opinions vary on how large a
sample is needed to treat the sample mean as a normal
random variable.

Some authors say n = 30, others (DeVore) say n = 50.
There really is no hard and fast number.
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Central Limit Theorem
Like many things in statistics, opinions vary on how large a
sample is needed to treat the sample mean as a normal
random variable.

Some authors say n = 30, others (DeVore) say n = 50.
There really is no hard and fast number.

Practically speaking, it is not a big issue. A study with
enough subjects to produce a statistically meaningful result
usually has enough to justify the use of the central limit
theorem.
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Central Limit Theorem
We will note in passing that the Central Limit Theorem is
actually considerably more general than what is stated in
the text.
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Central Limit Theorem
We will note in passing that the Central Limit Theorem is
actually considerably more general than what is stated in
the text.

The stated properties (independent, identically distributed
random variables in the sample) are those of a random
sample.
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Central Limit Theorem
We will note in passing that the Central Limit Theorem is
actually considerably more general than what is stated in
the text.

The stated properties (independent, identically distributed
random variables in the sample) are those of a random
sample.

Although we will not make use of it in its full generality, the
Central Limit Theorem actually does not require identically
distributed random variables.

The least restrictive sufficient conditions for the theorem to
hold are rather technical so most authors state a less
general version of the theorem that is adequate for most
purposes.
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Example
An IQ test is standardized to have a mean of 100 and a
standard deviation of 15. Suppose a random sample of 100
subjects is given the test.

Assuming individual scores are normally distributed with
mean 100 and standard deviation 15, what is the distribution
of the sample mean IQ score, x?
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Example
An IQ test is standardized to have a mean of 100 and a
standard deviation of 15. Suppose a random sample of 100
subjects is given the test.

Assuming individual scores are normally distributed with
mean 100 and standard deviation 15, what is the distribution
of the sample mean IQ score, x?

An earlier proposition states that

x ∼ N

(

µ,
σ
√

n

)

= N

(

100,
15

√
100

)

= N(100, 1.5)
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Example
In the previous example, what is the probability that the
sample mean x is less than 103?
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Example
In the previous example, what is the probability that the
sample mean x is less than 103?

This is just the probability that a normal random variable
with mean 100 and standard deviation 1.5 is less than (or
equal to, equality doesn’t really matter) 103, which we can
calculate as

= NORMDIST (103, 100, 1.5, TRUE) using a
spreadsheet

pnorm(103, 100, 1.5) using R
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Example
In the previous example, what is the probability that the
sample mean x is less than 103?

This is just the probability that a normal random variable
with mean 100 and standard deviation 1.5 is less than (or
equal to, equality doesn’t really matter) 103, which we can
calculate as

= NORMDIST (103, 100, 1.5, TRUE) using a
spreadsheet

pnorm(103, 100, 1.5) using R

Either way, the result is:

P (x ≤ 103) = 0.9772
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Example
In the previous example, what is the probability that the
sample mean x is between 98 and 102?
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Example
In the previous example, what is the probability that the
sample mean x is between 98 and 102?

This is just the probability that a normal random variable
with mean 100 and standard deviation 1.5 falls between 98
and 102.

= NORMDIST (102, 100, 1.5, TRUE) −
NORMDIST (98, 100, 1.5, TRUE) using a spreadsheet

pnorm(103, 100, 1.5) − pnorm(98, 100, 1.5) using R
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Example
In the previous example, what is the probability that the
sample mean x is between 98 and 102?

This is just the probability that a normal random variable
with mean 100 and standard deviation 1.5 falls between 98
and 102.

= NORMDIST (102, 100, 1.5, TRUE) −
NORMDIST (98, 100, 1.5, TRUE) using a spreadsheet

pnorm(103, 100, 1.5) − pnorm(98, 100, 1.5) using R

Either way, the result is:

P (98 ≤ x ≤ 102) = 0.8176
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Example
In the previous example, what is the probability that an
individual IQ score is between 98 and 102?
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Example
In the previous example, what is the probability that an
individual IQ score is between 98 and 102?

This is just the probability that a normal random variable
with mean 100 and standard deviation 15 falls between 98
and 102.

= NORMDIST (102, 100, 15, TRUE) −
NORMDIST (98, 100, 15, TRUE) using a spreadsheet

pnorm(103, 100, 15) − pnorm(98, 100, 15) using R
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Example
In the previous example, what is the probability that an
individual IQ score is between 98 and 102?

This is just the probability that a normal random variable
with mean 100 and standard deviation 15 falls between 98
and 102.

= NORMDIST (102, 100, 15, TRUE) −
NORMDIST (98, 100, 15, TRUE) using a spreadsheet

pnorm(103, 100, 15) − pnorm(98, 100, 15) using R

Either way, the result is:

P (98 ≤ X ≤ 102) = 0.1061
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Example
In the previous example, what is the probability that an
individual IQ score is between 98 and 102?

This is just the probability that a normal random variable
with mean 100 and standard deviation 15 falls between 98
and 102.

= NORMDIST (102, 100, 15, TRUE) −
NORMDIST (98, 100, 15, TRUE) using a spreadsheet

pnorm(103, 100, 15) − pnorm(98, 100, 15) using R

Either way, the result is:

P (98 ≤ X ≤ 102) = 0.1061

You should compare this to the previous example and
understand why they are different.
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