Random Vectors and Sums

Suppose X is a vector of two random variables representing a roll of two balanced dice,

$$
X=\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]
$$

where X_{1} and X_{2} each take the values $1,2,3,4,5,6$.

Random Vectors and Sums

Suppose X is a vector of two random variables representing a roll of two balanced dice,

$$
X=\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]
$$

where X_{1} and X_{2} each take the values $1,2,3,4,5,6$. When a pair of dice are rolled, usually we are more interested in the sum of the individual outcomes than the outcomes themselves.

Random Vectors and Sums

Suppose X is a vector of two random variables representing a roll of two balanced dice,

$$
X=\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]
$$

where X_{1} and X_{2} each take the values $1,2,3,4,5,6$. When a pair of dice are rolled, usually we are more interested in the sum of the individual outcomes than the outcomes themselves.
In this case, we define a new random variable Y as the sum of X_{1} and X_{2} :

$$
Y=X_{1}+X_{2}
$$

Random Vectors and Sums

We often need to determine the expected value $E(Y)$ and variance $V(Y)$ for this new variable.

We will assume that we know the expected value μ of the random vector X

$$
\mu=\left[\begin{array}{l}
\mu_{1} \\
\mu_{2}
\end{array}\right]=\left[\begin{array}{l}
E\left(X_{1}\right) \\
E\left(X_{2}\right)
\end{array}\right]
$$

and its variance-covariance matrix V :

$$
V=\left[\begin{array}{cc}
\sigma_{1}^{2} & \sigma_{12} \\
\sigma_{12} & \sigma_{2}^{2}
\end{array}\right]
$$

Random Vectors and Sums

The most succinct way to determine $E(Y)$ and $V(Y)$ is with matrix algebra. Think of the sum as the matrix product

$$
[1,1]\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]=1 \cdot X_{1}+1 \cdot X_{2}=X_{1}+X_{2}
$$

Random Vectors and Sums

The most succinct way to determine $E(Y)$ and $V(Y)$ is with matrix algebra. Think of the sum as the matrix product

$$
[1,1]\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]=1 \cdot X_{1}+1 \cdot X_{2}=X_{1}+X_{2}
$$

More generally, we can represent any linear combination of X_{1} and X_{2}

$$
\left[a_{1}, a_{2}\right]\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]=a \cdot X_{1}+b \cdot X_{2}=a_{1} X_{1}+a_{2} X_{2}
$$

Random Vectors and Sums

If we write the coefficients $\left[a_{1}, a_{2}\right]$ as a column vector a,

$$
a=\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]
$$

then the linear combination $Y=a_{1} X_{1}+a_{2} X_{2}$ can be written in matrix form

$$
Y=a^{\prime} X=\left[a_{1}, a_{2}\right]\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]
$$

Random Vectors and Sums

If we write the coefficients $\left[a_{1}, a_{2}\right]$ as a column vector a,

$$
a=\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]
$$

then the linear combination $Y=a_{1} X_{1}+a_{2} X_{2}$ can be written in matrix form

$$
Y=a^{\prime} X=\left[a_{1}, a_{2}\right]\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]
$$

The symbol a^{\prime} represents the transpose of a, which we obtain by writing the columns of a as rows:

Random Vectors and Sums

The following important result gives us a way to compute $E(Y)$ and $V(Y)$: Suppose

$$
Y=a^{\prime} X \quad \text { with } \quad a=\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right] \quad \text { and } \quad X=\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]
$$

and

$$
E(X)=\mu=\left[\begin{array}{l}
\mu_{1} \\
\mu_{2}
\end{array}\right] \quad \text { and } \quad V=\left[\begin{array}{cc}
\sigma_{1}^{2} & \sigma_{12} \\
\sigma_{12} & \sigma_{2}^{2}
\end{array}\right]
$$

Random Vectors and Sums

The following important result gives us a way to compute $E(Y)$ and $V(Y)$: Suppose

$$
Y=a^{\prime} X \quad \text { with } \quad a=\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right] \quad \text { and } \quad X=\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]
$$

and

$$
E(X)=\mu=\left[\begin{array}{l}
\mu_{1} \\
\mu_{2}
\end{array}\right] \quad \text { and } \quad V=\left[\begin{array}{cc}
\sigma_{1}^{2} & \sigma_{12} \\
\sigma_{12} & \sigma_{2}^{2}
\end{array}\right]
$$

Then

$$
E(Y)=a^{\prime} \mu \quad \text { and } \quad V(Y)=a^{\prime} V a
$$

Random Vectors and Sums

Example: Suppose X is a two-dimensional random vector:

$$
X=\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right] \quad E(X)=\mu=\left[\begin{array}{l}
1 \\
3
\end{array}\right] \quad \text { and } \quad V=\left[\begin{array}{ll}
2 & 1 \\
1 & 3
\end{array}\right]
$$

Random Vectors and Sums

Example: Suppose X is a two-dimensional random vector:

$$
X=\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right] \quad E(X)=\mu=\left[\begin{array}{l}
1 \\
3
\end{array}\right] \quad \text { and } \quad V=\left[\begin{array}{ll}
2 & 1 \\
1 & 3
\end{array}\right]
$$

If we define a new random variable $Y=X_{1}+X_{2}$, then

$$
Y=a^{\prime} X \quad \text { with } \quad a=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Random Vectors and Sums

Example: Suppose X is a two-dimensional random vector:

$$
X=\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right] \quad E(X)=\mu=\left[\begin{array}{l}
1 \\
3
\end{array}\right] \quad \text { and } \quad V=\left[\begin{array}{ll}
2 & 1 \\
1 & 3
\end{array}\right]
$$

If we define a new random variable $Y=X_{1}+X_{2}$, then

$$
Y=a^{\prime} X \quad \text { with } \quad a=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

then

$$
E(Y)=a^{\prime} \mu=[1,1]\left[\begin{array}{l}
1 \\
3
\end{array}\right]=1 \cdot 1+1 \cdot 3=4
$$

Random Vectors and Sums

and

$$
v(Y)=a^{\prime} V a=[1,1]\left[\begin{array}{ll}
2 & 1 \\
1 & 3
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Random Vectors and Sums

and

$$
\begin{gathered}
v(Y)=a^{\prime} V a=[1,1]\left[\begin{array}{ll}
2 & 1 \\
1 & 3
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
=[3,4]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=7
\end{gathered}
$$

Random Vectors and Sums

and

$$
\begin{gathered}
v(Y)=a^{\prime} V a=[1,1]\left[\begin{array}{ll}
2 & 1 \\
1 & 3
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
=[3,4]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=7
\end{gathered}
$$

Although the matrix notation can be confusing at first, the formulas

$$
E\left(a^{\prime} X\right)=a^{\prime} \mu \quad \text { and } \quad \operatorname{Variance}\left(a^{\prime} X\right)=a^{\prime} V a
$$

are much simpler than their non-matrix counterparts.

Random Vectors and Sums

Packages like MATLAB and GNU OCTAVE are designed to perform matrix computations and are optimized for it.

Random Vectors and Sums

Packages like MATLAB and GNU OCTAVE are designed to perform matrix computations and are optimized for it.
While not primarily designed for this, R has some rudimentary facilities that will suffice for our purposes.
The preceding example would be programmed in R as:

```
mu=matrix(c(1, 3), nrow=2)
V=matrix(c(2, 1, 1, 3), nrow=2
a=matrix(c(1, 1), nrow=2)
t (a) % *%mu
t (a) %*%V%**%a
```


Example 1

If X is a two-dimensional random vector and $Y=X_{1}+X_{2}$, find $E(Y)$ and $V(Y)$ if

$$
E(X)=\mu=\left[\begin{array}{l}
2 \\
4
\end{array}\right] \quad \text { and } \quad V=\left[\begin{array}{cc}
4 & -2 \\
-2 & 5
\end{array}\right]
$$

Example 1

If X is a two-dimensional random vector and $Y=X_{1}+X_{2}$, find $E(Y)$ and $V(Y)$ if

$$
E(X)=\mu=\left[\begin{array}{l}
2 \\
4
\end{array}\right] \quad \text { and } \quad V=\left[\begin{array}{cc}
4 & -2 \\
-2 & 5
\end{array}\right]
$$

Solution: In this case, $a=[1,1]^{\prime}$ and

$$
\begin{gathered}
E(Y)=a^{\prime} \mu=[1,1]\left[\begin{array}{l}
2 \\
4
\end{array}\right]=6 \\
V(Y)=a^{\prime} V a=[1,1]\left[\begin{array}{cc}
4 & -2 \\
-2 & 5
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=5
\end{gathered}
$$

Example 2

If X is a two-dimensional random vector and $Y=X_{1}-X_{2}$, find $E(Y)$ and $V(Y)$ if

$$
E(X)=\mu=\left[\begin{array}{l}
2 \\
4
\end{array}\right] \quad \text { and } \quad V=\left[\begin{array}{cc}
4 & -2 \\
-2 & 5
\end{array}\right]
$$

Example 2

If X is a two-dimensional random vector and $Y=X_{1}-X_{2}$, find $E(Y)$ and $V(Y)$ if

$$
E(X)=\mu=\left[\begin{array}{l}
2 \\
4
\end{array}\right] \quad \text { and } \quad V=\left[\begin{array}{cc}
4 & -2 \\
-2 & 5
\end{array}\right]
$$

Solution: In this case, $a=[1,-1]^{\prime}$ and

$$
\begin{gathered}
E(Y)=a^{\prime} \mu=[1,-1]\left[\begin{array}{l}
2 \\
4
\end{array}\right]=-2 \\
V(Y)=a^{\prime} V a=[1,-1]\left[\begin{array}{cc}
4 & -2 \\
-2 & 5
\end{array}\right]\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=13
\end{gathered}
$$

