
Random Vectors and Sums
Suppose X is a vector of two random variables
representing a roll of two balanced dice,

X =

[

X1

X2

]

where X1 and X2 each take the values 1, 2, 3, 4, 5, 6.
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Random Vectors and Sums
Suppose X is a vector of two random variables
representing a roll of two balanced dice,

X =

[

X1

X2

]

where X1 and X2 each take the values 1, 2, 3, 4, 5, 6.
When a pair of dice are rolled, usually we are more
interested in the sum of the individual outcomes than the
outcomes themselves.
In this case, we define a new random variable Y as the sum
of X1 and X2:

Y = X1 + X2
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Random Vectors and Sums
We often need to determine the expected value E(Y ) and
variance V (Y ) for this new variable.

We will assume that we know the expected value µ of the
random vector X

µ =

[

µ1

µ2

]

=

[

E(X1)

E(X2)

]

and its variance-covariance matrix V :

V =

[

σ2

1
σ12

σ12 σ2

2

]
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Random Vectors and Sums
The most succinct way to determine E(Y ) and V (Y ) is with
matrix algebra. Think of the sum as the matrix product

[1, 1]

[

X1

X2

]

= 1 · X1 + 1 · X2 = X1 + X2
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Random Vectors and Sums
The most succinct way to determine E(Y ) and V (Y ) is with
matrix algebra. Think of the sum as the matrix product

[1, 1]

[

X1

X2

]

= 1 · X1 + 1 · X2 = X1 + X2

More generally, we can represent any linear combination
of X1 and X2

[a1, a2]

[

X1

X2

]

= a · X1 + b · X2 = a1X1 + a2X2
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Random Vectors and Sums
If we write the coefficients [a1, a2] as a column vector a,

a =

[

a1

a2

]

then the linear combination Y = a1X1 + a2X2 can be written
in matrix form

Y = a′X = [a1, a2]

[

X1

X2

]
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Random Vectors and Sums
If we write the coefficients [a1, a2] as a column vector a,

a =

[

a1

a2

]

then the linear combination Y = a1X1 + a2X2 can be written
in matrix form

Y = a′X = [a1, a2]

[

X1

X2

]

The symbol a′ represents the transpose of a, which we
obtain by writing the columns of a as rows:

if a =

[

a1

a2

]

then a′ = [a1, a2]
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Random Vectors and Sums
The following important result gives us a way to compute
E(Y ) and V (Y ): Suppose

Y = a′X with a =

[

a1

a2

]

and X =

[

X1

X2

]

and

E(X) = µ =

[

µ1

µ2

]

and V =

[

σ2

1
σ12

σ12 σ2

2

]
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Random Vectors and Sums
The following important result gives us a way to compute
E(Y ) and V (Y ): Suppose

Y = a′X with a =

[

a1

a2

]

and X =

[

X1

X2

]

and

E(X) = µ =

[

µ1

µ2

]

and V =

[

σ2

1
σ12

σ12 σ2

2

]

Then
E(Y ) = a′µ and V (Y ) = a′V a
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Random Vectors and Sums
Example: Suppose X is a two-dimensional random vector:

X =

[

X1

X2

]

E(X) = µ =

[

1

3

]

and V =

[

2 1

1 3

]
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Random Vectors and Sums
Example: Suppose X is a two-dimensional random vector:

X =

[

X1

X2

]

E(X) = µ =

[

1

3

]

and V =

[

2 1

1 3

]

If we define a new random variable Y = X1 + X2, then

Y = a′X with a =

[

1

1

]
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Random Vectors and Sums
Example: Suppose X is a two-dimensional random vector:

X =

[

X1

X2

]

E(X) = µ =

[

1

3

]

and V =

[

2 1

1 3

]

If we define a new random variable Y = X1 + X2, then

Y = a′X with a =

[

1

1

]

then

E(Y ) = a′µ = [1, 1]

[

1

3

]

= 1 · 1 + 1 · 3 = 4
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Random Vectors and Sums
and

v(Y ) = a′V a = [1, 1]

[

2 1

1 3

] [

1

1

]
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Random Vectors and Sums
and

v(Y ) = a′V a = [1, 1]

[

2 1

1 3

] [

1

1

]

= [3, 4]

[

1

1

]

= 7

Vectors of Discrete Random Variables – p. 7/10



Random Vectors and Sums
and

v(Y ) = a′V a = [1, 1]

[

2 1

1 3

] [

1

1

]

= [3, 4]

[

1

1

]

= 7

Although the matrix notation can be confusing at first, the
formulas

E(a′X) = a′µ and Variance(a′X) = a′V a

are much simpler than their non-matrix counterparts.
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Random Vectors and Sums
Packages like MATLAB and GNU OCTAVE are designed to
perform matrix computations and are optimized for it.
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Random Vectors and Sums
Packages like MATLAB and GNU OCTAVE are designed to
perform matrix computations and are optimized for it.

While not primarily designed for this, R has some
rudimentary facilities that will suffice for our purposes.

The preceding example would be programmed in R as:

mu=matrix(c(1,3),nrow=2)
V=matrix(c(2,1,1,3),nrow=2
a=matrix(c(1,1),nrow=2)
t(a)%*%mu
t(a)%*%V%*%a
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Example 1
If X is a two-dimensional random vector and Y = X1 + X2,
find E(Y ) and V (Y ) if

E(X) = µ =

[

2

4

]

and V =

[

4 −2

−2 5

]
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Example 1
If X is a two-dimensional random vector and Y = X1 + X2,
find E(Y ) and V (Y ) if

E(X) = µ =

[

2

4

]

and V =

[

4 −2

−2 5

]

Solution: In this case, a = [1, 1]′ and

E(Y ) = a′µ = [1, 1]

[

2

4

]

= 6

V (Y ) = a′V a = [1, 1]

[

4 −2

−2 5

] [

1

1

]

= 5
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Example 2
If X is a two-dimensional random vector and Y = X1 − X2,
find E(Y ) and V (Y ) if

E(X) = µ =

[

2

4

]

and V =

[

4 −2

−2 5

]
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Example 2
If X is a two-dimensional random vector and Y = X1 − X2,
find E(Y ) and V (Y ) if

E(X) = µ =

[

2

4

]

and V =

[

4 −2

−2 5

]

Solution: In this case, a = [1,−1]′ and

E(Y ) = a′µ = [1,−1]

[

2

4

]

= −2

V (Y ) = a′V a = [1,−1]

[

4 −2

−2 5

] [

1

−1

]

= 13
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