Vectors of Discrete Random Variables

Vectors of random variables play an important role in statistics.

In fact, many common statistical formulas can be expressed most clearly and succinctly in the language of vectors and matrices.

Vectors of Discrete Random Variables

Vectors of random variables play an important role in statistics.

In fact, many common statistical formulas can be expressed most clearly and succinctly in the language of vectors and matrices.

The term multivariate is often used to describe the distributions we encounter working with random vectors.

Vectors of Discrete Random Variables

Multivariate discrete random variables (or random vectors) are a straightforward generalization of ordinary discrete random variables.
In place of a univariate probability mass function

$$
p(x)=P(X=x)
$$

we have a joint probability mass function, which in the 2-dimensional or bivarate case is:

$$
p\left(x_{1}, x_{2}\right)=P\left(X_{1}=x_{1} \quad \text { and } \quad X_{2}=x_{2}\right)
$$

Vectors of Discrete Random Variables

Multivariate discrete random variables (or random vectors) are a straightforward generalization of ordinary discrete random variables.
In place of a univariate probability mass function

$$
p(x)=P(X=x)
$$

we have a joint probability mass function, which in the 2-dimensional or bivarate case is:

$$
p\left(x_{1}, x_{2}\right)=P\left(X_{1}=x_{1} \quad \text { and } \quad X_{2}=x_{2}\right)
$$

In some cases, we will want to consider the component random variables $X 1$ and X_{2} as univariate or one-dimensinal random variables in their own right. These are called the marginal distributions of X_{1} and X_{2}.

Vectors of Discrete Random Variables

Expected values are definied much the same way, except we have to sum over each dimension. In the bivariate case, the expected value of X_{1}, the first component, is defined by:

$$
\mu_{1}=E\left(X_{1}\right)=\sum_{R(X)} \sum_{R(Y)} x_{1} \cdot p\left(x_{1}, x_{2}\right)
$$

Vectors of Discrete Random Variables

Expected values are definied much the same way, except we have to sum over each dimension. In the bivariate case, the expected value of X_{1}, the first component, is defined by:

$$
\mu_{1}=E\left(X_{1}\right)=\sum_{R(X)} \sum_{R(Y)} x_{1} \cdot p\left(x_{1}, x_{2}\right)
$$

The expected value of the second component X_{2} is:

$$
\mu_{2}=E\left(X_{2}\right)=\sum_{R(X)} \sum_{R(Y)} x_{2} \cdot p\left(x_{1}, x_{2}\right)
$$

Vectors of Discrete Random Variables

Variances are defined similarly. In the bivariate case, the variance of X_{1}, the first component, is defined by:

$$
\sigma_{1}^{2}=V\left(X_{1}\right)=\sum_{R(X)} \sum_{R(Y)}\left(x_{1}-\mu_{1}\right)^{2} \cdot p\left(x_{1}, x_{2}\right)
$$

Vectors of Discrete Random Variables

Variances are defined similarly. In the bivariate case, the variance of X_{1}, the first component, is defined by:

$$
\sigma_{1}^{2}=V\left(X_{1}\right)=\sum_{R(X)} \sum_{R(Y)}\left(x_{1}-\mu_{1}\right)^{2} \cdot p\left(x_{1}, x_{2}\right)
$$

The variance of the second component X_{2} is:

$$
\sigma_{2}^{2}=V\left(X_{2}\right)=\sum_{R(X)} \sum_{R(Y)}\left(x_{2}-\mu_{2}\right)^{2} \cdot p\left(x_{1}, x_{2}\right)
$$

Vectors of Discrete Random Variables

In the multivariate case there is an additional construct called the covariance of X_{1} and X_{2} defined by

$$
\sigma_{12}=\operatorname{Cov}\left(X_{1}, X_{2}\right)=\sum_{R(X)} \sum_{R(Y)}\left(x_{1}-\mu_{1}\right)\left(x_{2}-\mu_{2}\right) \cdot p\left(x_{1}, x_{2}\right)
$$

Vectors of Discrete Random Variables

In the multivariate case there is an additional construct called the covariance of X_{1} and X_{2} defined by

$$
\sigma_{12}=\operatorname{Cov}\left(X_{1}, X_{2}\right)=\sum_{R(X)} \sum_{R(Y)}\left(x_{1}-\mu_{1}\right)\left(x_{2}-\mu_{2}\right) \cdot p\left(x_{1}, x_{2}\right)
$$

The covariance is closely related to the correlation coefficient $\rho\left(X_{1}, X_{2}\right)$, which is defined as:

$$
\rho_{12}=\frac{\sigma_{12}}{\sqrt{\sigma_{1}^{2} \sigma_{2}^{2}}}
$$

Vectors of Discrete Random Variables

It is usually convenient to use vector notation to describe a bivariate random variable and its expectation:

$$
X=\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]
$$

and

$$
\mu=E(X)=\left[\begin{array}{l}
E\left(X_{1}\right) \\
E\left(X_{2}\right)
\end{array}\right]=\left[\begin{array}{l}
\mu_{1} \\
\mu_{2}
\end{array}\right]
$$

Vectors of Discrete Random Variables

In the three dimensional case, the notation is:

$$
X=\left[\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3}
\end{array}\right]
$$

and

$$
\mu=E(X)=\left[\begin{array}{l}
E\left(X_{1}\right) \\
E\left(X_{2}\right) \\
E\left(X_{3}\right)
\end{array}\right]=\left[\begin{array}{l}
\mu_{1} \\
\mu_{2} \\
\mu_{3}
\end{array}\right]
$$

Vectors of Discrete Random Variables

Finally, the general case of n dimensions is:

$$
X=\left[\begin{array}{c}
X_{1} \\
X_{2} \\
\vdots \\
X_{n}
\end{array}\right]
$$

and

$$
\mu=E(X)=\left[\begin{array}{c}
E\left(X_{1}\right) \\
E\left(X_{2}\right) \\
\vdots \\
E\left(X_{n}\right)
\end{array}\right]=\left[\begin{array}{c}
\mu_{1} \\
\mu_{2} \\
\vdots \\
\mu_{n}
\end{array}\right]
$$

Vectors of Discrete Random Variables

In the bivariate case, $X=\left(X_{1}, X_{2}\right)$ and the generalization of the variance $V(X)$ is the variance-covariance matrix defined by

$$
\begin{aligned}
\Sigma=V(X)= & {\left[\begin{array}{cc}
V\left(X_{1}\right) & \operatorname{Cov}\left(X_{1}, X_{2}\right) \\
\operatorname{Cov}\left(X_{1}, X_{2}\right) & V\left(X_{2}\right)
\end{array}\right] } \\
& =\left[\begin{array}{cc}
\sigma_{1}^{2} & \sigma_{12} \\
\sigma_{12} & \sigma_{2}^{2}
\end{array}\right]
\end{aligned}
$$

Vectors of Discrete Random Variables

In the three dimensional case, $X=\left(X_{1}, X_{2}, X_{3}\right)$ and

$$
\begin{gathered}
\Sigma=V(X)=\left[\begin{array}{ccc}
V\left(X_{1}\right) & \operatorname{Cov}\left(X_{1}, X_{2}\right) & \operatorname{Cov}\left(X_{1}, X_{3}\right) \\
\operatorname{Cov}\left(X_{1}, X_{2}\right) & V\left(X_{2}\right) & \operatorname{Cov}\left(X_{2}, X_{3}\right) \\
\operatorname{Cov}\left(X_{1}, X_{3}\right) & \operatorname{Cov}\left(X_{2}, x_{3}\right) & V\left(X_{3}\right)
\end{array}\right] \\
=\left[\begin{array}{ccc}
\sigma_{1}^{2} & \sigma_{12} & \sigma_{13} \\
\sigma_{12} & \sigma_{2}^{2} & \sigma_{23} \\
\sigma_{13} & \sigma_{23} & \sigma_{3}^{2}
\end{array}\right]
\end{gathered}
$$

Vectors of Discrete Random Variables

In the case of n dimensions, $X=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ and

$$
\Sigma=V(X)=\left[\begin{array}{ccccc}
\sigma_{1}^{2} & \sigma_{12} & \sigma_{13} & \cdots & \sigma_{1 n} \\
\sigma_{12} & \sigma_{2}^{2} & \cdots & & \\
\sigma_{13} & \vdots & \sigma_{3}^{2} & & \vdots \\
\vdots & & & \ddots & \\
\sigma_{1 n} & & \cdots & & \sigma_{n}^{2}
\end{array}\right]
$$

Vectors of Discrete Random Variables

In the case of n dimensions, $X=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ and

$$
\Sigma=V(X)=\left[\begin{array}{ccccc}
\sigma_{1}^{2} & \sigma_{12} & \sigma_{13} & \cdots & \sigma_{1 n} \\
\sigma_{12} & \sigma_{2}^{2} & \cdots & & \\
\sigma_{13} & \vdots & \sigma_{3}^{2} & & \vdots \\
\vdots & & & \ddots & \\
\sigma_{1 n} & & \cdots & & \sigma_{n}^{2}
\end{array}\right]
$$

In n dimensions, there are

$$
\frac{n(n+1)}{2} \text { distinct variances and covariances }
$$

