
Random Numbers
We have performed a number of simulation experiments
using computer-generated "random" numbers.

Introduction – p. 1/14



Random Numbers
We have performed a number of simulation experiments
using computer-generated "random" numbers.

As noted earlier, these are more correctly called
"psuedorandom" numbers, because they are not actually
random.

Because they are used extensively, it is worth spending
some time to understand how they are generated.

Introduction – p. 1/14



Random Numbers
We have performed a number of simulation experiments
using computer-generated "random" numbers.

As noted earlier, these are more correctly called
"psuedorandom" numbers, because they are not actually
random.

Because they are used extensively, it is worth spending
some time to understand how they are generated.

Most algorithms for generating psuedorandom numbers
work by computing a sequence of numbers recursively,
meaning that we always compute the next number in the
sequence from its predecessor(s).

Introduction – p. 1/14



Random Numbers
We might represent a general recursive algorithm by the
recursion formula or difference equation

xn+1 = f(xn), n = 1, 2, 3, . . .

Introduction – p. 2/14



Random Numbers
We might represent a general recursive algorithm by the
recursion formula or difference equation

xn+1 = f(xn), n = 1, 2, 3, . . .

The "solution" of such an equation is a sequence for which
each pair of consecutive terms satisfies the recursion
formula:

x2 = f(x1)

x3 = f(x2)

x4 = f(x3)
...

...

Introduction – p. 2/14



Random Numbers
To determine the solution sequence, we need to start with
one of the terms.

Then we can determine the sequence from that point on by
successively applying the recursion formula.

Introduction – p. 3/14



Random Numbers
To determine the solution sequence, we need to start with
one of the terms.

Then we can determine the sequence from that point on by
successively applying the recursion formula.

Usually we start with a given initial value labelled x1

Introduction – p. 3/14



Random Numbers
To determine the solution sequence, we need to start with
one of the terms.

Then we can determine the sequence from that point on by
successively applying the recursion formula.

Usually we start with a given initial value labelled x1

The recursion formula together with an initial value x1 is
called an initial value problem

xn+1 = f(xn), n = 1, 2, 3, . . . x1 = 1

Introduction – p. 3/14



Random Numbers
To determine the solution sequence, we need to start with
one of the terms.

Then we can determine the sequence from that point on by
successively applying the recursion formula.

Usually we start with a given initial value labelled x1

The recursion formula together with an initial value x1 is
called an initial value problem

xn+1 = f(xn), n = 1, 2, 3, . . . x1 = 1

Every initial value problem has a unique solution, which is a
sequence x1, x2, x3, . . .

Introduction – p. 3/14



Random Numbers
One of the common types of psuedorandom number
generators uses the following recursion formula:

xn+1 = b · xnmod a, n = 1, 2, 3, . . .

where b · xnmod a means "the remainder when b · xn is
divided by a"

Introduction – p. 4/14



Random Numbers
One of the common types of psuedorandom number
generators uses the following recursion formula:

xn+1 = b · xnmod a, n = 1, 2, 3, . . .

where b · xnmod a means "the remainder when b · xn is
divided by a"

Integers that produce the same remainder on division by a

are said to be "congruent modulo a". As a result, this class
of psuedorandom number generators is called congruental.

Introduction – p. 4/14



Random Numbers
Congruential generators are popular because they are easy
to program, inexpensive to run, and produce "good" results
for certain values of a and b.

Introduction – p. 5/14



Random Numbers
Congruential generators are popular because they are easy
to program, inexpensive to run, and produce "good" results
for certain values of a and b.

For a psuedorandom number generator, "good" results
means that the sequence produced behaves like a truly
random sequence, even though it is completely
deterministic.

Introduction – p. 5/14



Random Numbers
Congruential generators are popular because they are easy
to program, inexpensive to run, and produce "good" results
for certain values of a and b.

For a psuedorandom number generator, "good" results
means that the sequence produced behaves like a truly
random sequence, even though it is completely
deterministic.

As an example of how easy they are to program, we will
now write a congruental generator in R.

Introduction – p. 5/14



Random Numbers
First start R and define the values of a and b.

We’ll use a = 23 and b = 5. Enter:

a<-23
b<-5

Introduction – p. 6/14



Random Numbers
First start R and define the values of a and b.

We’ll use a = 23 and b = 5. Enter:

a<-23
b<-5

Now allocate an array called x to hold the sequence. We’ll
start with 10, 000 elements:

x<-rep(0,10000)

Introduction – p. 6/14



Random Numbers
First start R and define the values of a and b.

We’ll use a = 23 and b = 5. Enter:

a<-23
b<-5

Now allocate an array called x to hold the sequence. We’ll
start with 10, 000 elements:

x<-rep(0,10000)

The recursion formula requires a starting value x1, which
we’ll assign to the first element of the x array in R.

Always pick an integer greater than 0 and less than a. Enter:

x[1]<-13

Introduction – p. 6/14



Random Numbers
Now write the R statement that implements the recursion
formula

xn+1 = b · xnmod a, n = 1, 2, 3, . . . n1 = 13

Introduction – p. 7/14



Random Numbers
Now write the R statement that implements the recursion
formula

xn+1 = b · xnmod a, n = 1, 2, 3, . . . n1 = 13

The MOD operator in R is a double percent sign %%, and
the multiplication operator is an asterisk ∗.

Introduction – p. 7/14



Random Numbers
Now write the R statement that implements the recursion
formula

xn+1 = b · xnmod a, n = 1, 2, 3, . . . n1 = 13

The MOD operator in R is a double percent sign %%, and
the multiplication operator is an asterisk ∗.

We designate the nth element of x by x[n]. In the R
language, the recursion formula for xn+1 is:

x[n+1] <- (b*x[n]) %% a

Introduction – p. 7/14



Random Numbers
We will also make use of a construct called FOR that
enables us to execute a block of statements a certain
number of times, in this case 9,999.

Introduction – p. 8/14



Random Numbers
We will also make use of a construct called FOR that
enables us to execute a block of statements a certain
number of times, in this case 9,999.

In the R language, the correct syntax for this is:

for(n in 1:9999) {some statement to be executed}

Introduction – p. 8/14



Random Numbers
We will also make use of a construct called FOR that
enables us to execute a block of statements a certain
number of times, in this case 9,999.

In the R language, the correct syntax for this is:

for(n in 1:9999) {some statement to be executed}

This construct will execute the statements in curly brackets
{} 9,999 times, with n set to:

1 the first time

2 the second time

3 the third time

and so on.

Introduction – p. 8/14



Random Numbers
Now we are ready to write the full R statement by
combining the FOR construct with the recursion formula
from the previous slide. The result is:

for(n in 1:9999) {x[n+1] <- (b*x[n]) %% a}

Introduction – p. 9/14



Random Numbers
Now we are ready to write the full R statement by
combining the FOR construct with the recursion formula
from the previous slide. The result is:

for(n in 1:9999) {x[n+1] <- (b*x[n]) %% a}

If we typed the statement correctly, it should apply the
recursion formula to compute x[2] through x[10000].

Introduction – p. 9/14



Random Numbers
Now we are ready to write the full R statement by
combining the FOR construct with the recursion formula
from the previous slide. The result is:

for(n in 1:9999) {x[n+1] <- (b*x[n]) %% a}

If we typed the statement correctly, it should apply the
recursion formula to compute x[2] through x[10000].

To view the first 100 values of the result, type:

x[1:00]

Introduction – p. 9/14



Random Numbers
Now we are ready to write the full R statement by
combining the FOR construct with the recursion formula
from the previous slide. The result is:

for(n in 1:9999) {x[n+1] <- (b*x[n]) %% a}

If we typed the statement correctly, it should apply the
recursion formula to compute x[2] through x[10000].

To view the first 100 values of the result, type:

x[1:00]

Notice that the sequence consists of 22 positive integers
repeated over and over in this sequence:

13,19,3,15,6,7,12,14,1,5,2,10,4,20,8,17,16,11,9,22,18,21

Introduction – p. 9/14



Random Numbers
Now generate a frequency table of the values in x by
entering:

table(x)

Introduction – p. 10/14



Random Numbers
Now generate a frequency table of the values in x by
entering:

table(x)

This should produce a list of the unique values among the
10, 000 elements of the x array, with a count of how many
times each of them occurs.

Introduction – p. 10/14



Random Numbers
Now generate a frequency table of the values in x by
entering:

table(x)

This should produce a list of the unique values among the
10, 000 elements of the x array, with a count of how many
times each of them occurs.

Notice that the counts differ by at most one, because the
same sequence repeats over and over.

Introduction – p. 10/14



Random Numbers
Now generate a frequency table of the values in x by
entering:

table(x)

This should produce a list of the unique values among the
10, 000 elements of the x array, with a count of how many
times each of them occurs.

Notice that the counts differ by at most one, because the
same sequence repeats over and over.

For certain choices of a and b, number theory guarantees
that this will happen:

The sequence will contain the positive integers from 1 to
a − 1 in some shuffled order that repeats over and over.

Introduction – p. 10/14



Random Numbers
One last step remains. We would like our psuedorandom
number generator to produce numbers between zero and
one, not integers from 1 to 22.

Introduction – p. 11/14



Random Numbers
One last step remains. We would like our psuedorandom
number generator to produce numbers between zero and
one, not integers from 1 to 22.

We can accomplish this by dividing each element of the
sequence by the value of a, 23 in this case. Enter:

z<-x/23
z[1:100]

Introduction – p. 11/14



Random Numbers
One last step remains. We would like our psuedorandom
number generator to produce numbers between zero and
one, not integers from 1 to 22.

We can accomplish this by dividing each element of the
sequence by the value of a, 23 in this case. Enter:

z<-x/23
z[1:100]

Notice that the contents of the z array resemble the output
of runif().

Introduction – p. 11/14



Random Numbers
In fact, the only thing that keeps this from being a decent
random number generator is the fact that it only generates
22 values.

Introduction – p. 12/14



Random Numbers
In fact, the only thing that keeps this from being a decent
random number generator is the fact that it only generates
22 values.

The only difference between our congruential generator
and the ones actually implemented in many statistical
packages is that they have a much larger value of a.

(as well as a corresponding b that produces all integers
from 1 to a − 1).

Introduction – p. 12/14



Random Numbers
It should be clear why psuedorandom numbers generated
in this way are not random.

Introduction – p. 13/14



Random Numbers
It should be clear why psuedorandom numbers generated
in this way are not random.

If you pick any positive integer less than a − 1, you can set
the initial value x1 to this number and the rest of the
sequence is entirely determined.

Introduction – p. 13/14



Random Numbers
It should be clear why psuedorandom numbers generated
in this way are not random.

If you pick any positive integer less than a − 1, you can set
the initial value x1 to this number and the rest of the
sequence is entirely determined.

Some implementations allow you to specify a starting value,
usually called the seed.

If you specify the seed, the same sequence of "random"
numbers will be generated every time.

Introduction – p. 13/14



Random Numbers
It should be clear why psuedorandom numbers generated
in this way are not random.

If you pick any positive integer less than a − 1, you can set
the initial value x1 to this number and the rest of the
sequence is entirely determined.

Some implementations allow you to specify a starting value,
usually called the seed.

If you specify the seed, the same sequence of "random"
numbers will be generated every time.

This is helpful for things like debugging simulation
programs.

Introduction – p. 13/14



Random Numbers
Implementations that do not allow you to specify the seed
usually determine it internally in a way that makes it
somewhat random.

One way to do this is to use the low order digits of a high
resolution clock, which most systems have, at the instant
the "enter" key is pressed.

Introduction – p. 14/14


	Random Numbers
	Random Numbers
	Random Numbers

	Random Numbers
	Random Numbers

	Random Numbers
	Random Numbers
	Random Numbers
	Random Numbers

	Random Numbers
	Random Numbers

	Random Numbers
	Random Numbers
	Random Numbers

	Random Numbers
	Random Numbers
	Random Numbers

	Random Numbers
	Random Numbers
	Random Numbers

	Random Numbers
	Random Numbers
	Random Numbers

	Random Numbers
	Random Numbers
	Random Numbers
	Random Numbers

	Random Numbers
	Random Numbers
	Random Numbers
	Random Numbers

	Random Numbers
	Random Numbers
	Random Numbers

	Random Numbers
	Random Numbers

	Random Numbers
	Random Numbers
	Random Numbers
	Random Numbers

	Random Numbers

