Experiments, Outcomes, and Events

An experiment is a repeatable procedure by which observations are made.

Experiments, Outcomes, and Events

An experiment is a repeatable procedure by which observations are made.

An outcome is the result of an experiment. Each time the experiment is repeated, exactly one outcome results.

Experiments, Outcomes, and Events

An experiment is a repeatable procedure by which observations are made.

An outcome is the result of an experiment. Each time the experiment is repeated, exactly one outcome results.
The set of all possibl outcomes S is called the sample space of the experiment.

Experiments, Outcomes, and Events

An experiment is a repeatable procedure by which observations are made.

An outcome is the result of an experiment. Each time the experiment is repeated, exactly one outcome results.
The set of all possibl outcomes S is called the sample space of the experiment.

A subset of the sample space is called an event

Experiments, Outcomes, and Events

Example: An experiment consists of drawing a single card from a well-shuffled deck of 52.

Experiments, Outcomes, and Events

Example: An experiment consists of drawing a single card from a well-shuffled deck of 52.
The sample space has 52 outcomes, representing the cards in a standard deck. Each represents an outcome.

Experiments, Outcomes, and Events

Example: An experiment consists of drawing a single card from a well-shuffled deck of 52.

The sample space has 52 outcomes, representing the cards in a standard deck. Each represents an outcome.
The event "a 4 is drawn" is a subset with four elements.

Probability Axioms

Axiom 1: For any event A,

$$
P(A) \geq 0
$$

Probability Axioms

Axiom 1: For any event A,

$$
P(A) \geq 0
$$

Axiom 2: If Ω represents the entire sample space of an experiment,

$$
P(\Omega)=1
$$

Probability Axioms

Axiom 1: For any event A,

$$
P(A) \geq 0
$$

Axiom 2: If Ω represents the entire sample space of an experiment,

$$
P(\Omega)=1
$$

Axiom 3: If $A_{1}, A_{2}, A_{3}, \ldots$ is an infinite collection of disjoint events,

$$
P\left(A_{1} \cup A_{2} \cup A_{3} \cup \cdots\right)=\sum_{i=1}^{\infty} P\left(A_{i}\right)
$$

Additional Properties

Events for which there are no corresponding outcomes have probability zero.
If \emptyset represents the set with no elements,

$$
P(\emptyset)=0
$$

This is called the null event

Additional Properties

Events for which there are no corresponding outcomes have probability zero.
If \emptyset represents the set with no elements,

$$
P(\emptyset)=0
$$

This is called the null event
If A^{\prime} represents the compliment of A (relative to Ω),

$$
P\left(A^{\prime}\right)=1-P(A)
$$

Additional Properties

Events for which there are no corresponding outcomes have probability zero.
If \emptyset represents the set with no elements,

$$
P(\emptyset)=0
$$

This is called the null event
If A^{\prime} represents the compliment of A (relative to Ω),

$$
P\left(A^{\prime}\right)=1-P(A)
$$

The probability of an event cannot exceed 1. For any event A,

$$
P(A) \leq 1
$$

Additional Properties

For any two events A and B,

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

Additional Properties

For any two events A and B,

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

We have to subtract $P(A \cap B)$ because both $P(A)$ and $P(B)$ include this, so we have counted it twice.

Additional Properties

For any two events A and B,

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

We have to subtract $P(A \cap B)$ because both $P(A)$ and $P(B)$ include this, so we have counted it twice.
The rule extends to unions of more than two events, but becomes more complicated:

$$
\begin{gathered}
P(A \cup B \cup C)=P(A)+P(B)+P(C) \\
-P(A \cap B)-P(A \cap C)-P(B \cap C)+P(A \cap B \cap C)
\end{gathered}
$$

Counting Rules for Ordered Pairs

Suppose an ordered pair

$$
\left(P_{i}, Q_{j}\right)
$$

is to be made up with P_{i} chosen from a set of n candidates:

$$
P_{i} \in\left\{P_{1}, P_{2}, \ldots, P_{n}\right\}
$$

Counting Rules for Ordered Pairs

Suppose an ordered pair

$$
\left(P_{i}, Q_{j}\right)
$$

is to be made up with P_{i} chosen from a set of n candidates:

$$
P_{i} \in\left\{P_{1}, P_{2}, \ldots, P_{n}\right\}
$$

Also suppose Q_{j} chosen from a set of m candidates:

$$
Q_{i} \in\left\{Q_{1}, Q_{2}, \ldots, Q_{m}\right\}
$$

Counting Rules for Ordered Pairs

Suppose an ordered pair

$$
\left(P_{i}, Q_{j}\right)
$$

is to be made up with P_{i} chosen from a set of n candidates:

$$
P_{i} \in\left\{P_{1}, P_{2}, \ldots, P_{n}\right\}
$$

Also suppose Q_{j} chosen from a set of m candidates:

$$
Q_{i} \in\left\{Q_{1}, Q_{2}, \ldots, Q_{m}\right\}
$$

Then the number of distinct ordered pairs that can possibly result is:

$$
n \times m
$$

Counting Rules for n-tuples

The rule extends to ordered triples: If

$$
\left(P_{i}, Q_{j}, R_{k}\right)
$$

is to be made up with P_{i} chosen from a set of n candidates, Q_{j} from a set of m, and R_{k} from a set of o, the number of distinct ordered pairs that can possibly result is:

$$
n \times m \times o
$$

Counting Rules for n-tuples

The rule extends to ordered triples: If

$$
\left(P_{i}, Q_{j}, R_{k}\right)
$$

is to be made up with P_{i} chosen from a set of n candidates, Q_{j} from a set of m, and R_{k} from a set of o, the number of distinct ordered pairs that can possibly result is:

$$
n \times m \times O
$$

In general, if we are choosing an ordered list of k elements with n_{1} choices for the first element, n_{2} for the second, and so on, the number of possible ordered k-tuples is:

$$
n_{1} \cdot n_{2} \cdot n_{3} \cdots n_{k}
$$

Permutations

A permutation is an ordered subset.

Permutations

A permutation is an ordered subset.
If this class were to elect a president, vice president, and secretary, each distinct set of officers would be considered a permutation of three members from a class of ten.

Permutations

A permutation is an ordered subset.
If this class were to elect a president, vice president, and secretary, each distinct set of officers would be considered a permutation of three members from a class of ten.
Order matters because any given set of three people can be assigned in several ways to the three offices.

Permutations

A permutation is an ordered subset.
If this class were to elect a president, vice president, and secretary, each distinct set of officers would be considered a permutation of three members from a class of ten.
Order matters because any given set of three people can be assigned in several ways to the three offices.
The number of permutations (ordered subsets) of size k taken from a set of n objects is:

$$
P_{k, n}=\frac{n!}{(n-k)!}
$$

Combinations

A combination is an unordered subset.

Combinations

A combination is an unordered subset.
The classic example is "combination plates" offered by many Asian resturaunts.

Combinations

A combination is an unordered subset.
The classic example is "combination plates" offered by many Asian resturaunts.
The number of combinations (unordered subsets) of size k chosen from a set of n objects is:

$$
C_{k, n}=\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

Examples

A soccer league has 11 teams in division 1 and 10 in division 2. If the championship match always has one team from division 1 and one from division 2, how many different pair of teams are possible in the championship game?

Examples

A soccer league has 11 teams in division 1 and 10 in division 2. If the championship match always has one team from division 1 and one from division 2, how many different pair of teams are possible in the championship game?
Answer: 110 (by the product rule for ordered pairs with $n_{1}=11$ and $n_{2}=10$, the number of pairs is
$n_{1} n_{2}=11 \cdot 10=110$)

Examples

A certain car is available with a choice of 5 -speed manual, 4 -speed manual, or automatic transmission, and two or four wheel drive. How many combinations of transmission and drive are possible?

Examples

A certain car is available with a choice of 5 -speed manual, 4 -speed manual, or automatic transmission, and two or four wheel drive. How many combinations of transmission and drive are possible?
Answer: 6 (by the product rule for ordered pairs with $n_{1}=3$ and $n_{2}=2$, the number of pairs is $n_{1} n_{2}=3 \cdot 2=6$)

Examples

An Asian resturaunt offers combination plates with three items chosen from a list of 10 . How many different combination plates are possible?

Examples

An Asian resturaunt offers combination plates with three items chosen from a list of 10 . How many different combination plates are possible?
Answer: This will be the number of subsets containg three elements chosen from a set of 10, with order not important.

Because the order does not matter, we use combinations

$$
C_{3,10}=\binom{10}{3}=\frac{10!}{3!7!}=\frac{10 \cdot 9 \cdot 8}{3 \cdot 2 \cdot 1}=120
$$

You can use the spreadsheet function $=\operatorname{COMBIN}(10,3)$ to compute this.

Examples

Another resturaunt offers a luncheon special with 4 choices of appetizer, 5 choices of entree, and 3 choices of desert. How many different meals are possible?

Examples

Another resturaunt offers a luncheon special with 4 choices of appetizer, 5 choices of entree, and 3 choices of desert. How many different meals are possible?
Answer: Use the more general form of the product rule, with $n_{1}=4, n_{2}=5$, and $n 3=3$. The number of different meals is:

$$
n_{1} \cdot n_{2} \cdot n_{3}=4 \cdot 5 \cdot 3=6
$$

Examples

A class of 420 students will elect a president, vice president, and secretary. If no one is allowed to hold two offices, how many different sets of class officers are possible?

Examples

A class of 420 students will elect a president, vice president, and secretary. If no one is allowed to hold two offices, how many different sets of class officers are possible?
Answer: This will be the number of subsets containg three elements chosen from a set of 420, with order important.

Because the order matters, we use permutations

$$
P_{3,420}=\frac{420!}{417!}=420 \cdot 419 \cdot 418=73,559,640
$$

You can use the spreadsheet function =PERMUT $(420,3)$ to compute this.

Examples

Examples

Answer: This will be the number of subsets containg three elements chosen from a set of 420, with order important.

Because the order matters, we use permutations

$$
P_{3,420}=\frac{420!}{417!}=420 \cdot 419 \cdot 418=73,559,640
$$

You can use the spreadsheet function =PERMUT $(420,3)$ to compute this.

