Discrete Distributions

The next distribution we will consider is the Poisson distribution.

Discrete Distributions

The next distribution we will consider is the Poisson distribution.

The Poisson is a limiting form of the binomial distribution that you get if you let n become very large and the probability of success p very small, but always keep $n p=\lambda$ the same.

Discrete Distributions

The next distribution we will consider is the Poisson distribution.

The Poisson is a limiting form of the binomial distribution that you get if you let n become very large and the probability of success p very small, but always keep $n p=\lambda$ the same.

Another way to say this is that we take binomial random variables with larger and larger n, but we keep the expected number of successes $n p=\lambda$ the same for all of them.

Discrete Distributions

The next distribution we will consider is the Poisson distribution.

The Poisson is a limiting form of the binomial distribution that you get if you let n become very large and the probability of success p very small, but always keep $n p=\lambda$ the same.

Another way to say this is that we take binomial random variables with larger and larger n, but we keep the expected number of successes $n p=\lambda$ the same for all of them.

The limit of the distribution of such a sequence of random variables as $n \rightarrow \infty$ is a Poisson.

The Poisson Distribution

The probability mass function is:

$$
f(x)=p(x ; \lambda)=\frac{e^{-\lambda} \lambda^{x}}{x!}, \quad x=0,1,2,3, \ldots
$$

The Poisson Distribution

The probability mass function is:

$$
f(x)=p(x ; \lambda)=\frac{e^{-\lambda} \lambda^{x}}{x!}, \quad x=0,1,2,3, \ldots
$$

$$
E(X)=\lambda \quad V(X)=\lambda
$$

The Poisson Distribution

The probability mass function is:

$$
f(x)=p(x ; \lambda)=\frac{e^{-\lambda} \lambda^{x}}{x!}, \quad x=0,1,2,3, \ldots
$$

$$
E(X)=\lambda \quad V(X)=\lambda
$$

Computation:

Value $\quad \mathrm{R}$
$P(X=x) \quad \operatorname{dpois}(x, \lambda)=\operatorname{POISSON}(x, \lambda, F A L S E)$
$P(X \leq x) \quad \operatorname{ppois}(x, \lambda)=\operatorname{POISSON}(x, \lambda, T R U E)$

The Poisson Distribution

Now we will perform some numerical experiments.
First generate a sample of $1,000,000$ observations for a poisson experiment with $\lambda=4$:
$x<-$ rpois(1000000,4)

The Poisson Distribution

Now we will perform some numerical experiments.
First generate a sample of $1,000,000$ observations for a poisson experiment with $\lambda=4$:
$x<-r p o i s(1000000,4)$
Now plot a histogram of the results:
$\operatorname{hist}(x)$

The Poisson Distribution

Now we will perform some numerical experiments.
First generate a sample of $1,000,000$ observations for a poisson experiment with $\lambda=4$:
$x<-$ rpois(1000000,4)
Now plot a histogram of the results:
hist(x)
To get a table of the results enter table(x)

The Poisson Distribution

Now we will perform some numerical experiments.
First generate a sample of $1,000,000$ observations for a poisson experiment with $\lambda=4$:
$x<-$ rpois(1000000,4)
Now plot a histogram of the results:
hist(x)
To get a table of the results enter table(x)

The results through $X=6$ should look something like:

The Poisson Distribution

183917288614681919539919557815631210398 Now compare the frequencies to the probabilities.
First compute the probability that $X=0$: dpois(0,4)

The Poisson Distribution

$\begin{array}{lllllll}18391 & 72886 & 146819 & 195399 & 195578 & 156312 & 10398\end{array}$ Now compare the frequencies to the probabilities.
First compute the probability that $X=0$:
dpois(0,4)
The result should be something like
[1] 0.1831

The Poisson Distribution

$\begin{array}{lllllll}18391 & 72886 & 146819 & 195399 & 195578 & 156312 & 10398\end{array}$ Now compare the frequencies to the probabilities.
First compute the probability that $X=0$:
dpois(0,4)
The result should be something like [1] 0.1831
To get the probability that $X=1$ enter dpois(1,4)

The Poisson Distribution

$\begin{array}{lllllll}18391 & 72886 & 146819 & 195399 & 195578 & 156312 & 10398\end{array}$ Now compare the frequencies to the probabilities.
First compute the probability that $X=0$:
dpois(0,4)
The result should be something like
[1] 0.1831
To get the probability that $X=1$ enter dpois(1,4)

This time the results should look something like:
[1] 0.07326

The Poisson Distribution

$\begin{array}{lllllll}18391 & 72886 & 146819 & 195399 & 195578 & 156312 & 10398\end{array}$ Next compute the probability that $X=2$:
dpois(2,4)

The Poisson Distribution

$\begin{array}{lllllll}18391 & 72886 & 146819 & 195399 & 195578 & 156312 & 10398\end{array}$ Next compute the probability that $X=2$:
dpois(2,4)
The result should be something like
[1] 0.146525

The Poisson Distribution

$\begin{array}{lllllll}18391 & 72886 & 146819 & 195399 & 195578 & 156312 & 10398\end{array}$ Next compute the probability that $X=2$:
dpois(2,4)
The result should be something like [1] 0.146525

To get the probability that $X=5$ enter dnbinom(5,3,0.4)

The Poisson Distribution

$\begin{array}{lllllll}18391 & 72886 & 146819 & 195399 & 195578 & 156312 & 10398\end{array}$ Next compute the probability that $X=2$:
dpois(2,4)
The result should be something like [1] 0.146525

To get the probability that $X=5$ enter dnbinom ($5,3,0.4$)

This time the results should look something like:
[1] 0.175467

The Poisson Distribution

The expected value $E(X)$ in this case is:

$$
E(X)=\lambda=4
$$

The Poisson Distribution

The expected value $E(X)$ in this case is:

$$
E(X)=\lambda=4
$$

To compute the sample mean \bar{x}, enter mean(x)

The Poisson Distribution

The expected value $E(X)$ in this case is:

$$
E(X)=\lambda=4
$$

To compute the sample mean \bar{x}, enter mean(x) The result should be something like
[1] 3.999121

The Poisson Distribution

The variance $V(X)$ in this case is:

$$
V(X)=\lambda=4
$$

The Poisson Distribution

The variance $V(X)$ in this case is:

$$
V(X)=\lambda=4
$$

To compute the sample variance s^{2}, enter $\operatorname{var}(x)$

The Poisson Distribution

The variance $V(X)$ in this case is:

$$
V(X)=\lambda=4
$$

To compute the sample variance s^{2}, enter $\operatorname{var}(x)$ The result should be something like [1] 3.999059

The Poisson Distribution

The number of cars arriving per minute at a toll booth has a poisson distribution, and the average number of cars arriving per minute is 12 .

Find the probability that exactly 10 cars arrive in a certain minute.

The Poisson Distribution

The number of cars arriving per minute at a toll booth has a poisson distribution, and the average number of cars arriving per minute is 12 .

Find the probability that exactly 10 cars arrive in a certain minute.

Solution: 0.104837

The Poisson Distribution

The number of cars arriving per minute at a toll booth has a poisson distribution, and the average number of cars arriving per minute is 12 .

Find the probability that exactly 10 cars arrive in a certain minute.

Solution: 0.104837
dpois(10, 12)

The Poisson Distribution

The number of phone calls going through a certain exchange per second has a Poisson distribution with $\lambda=6$

Find 8 or fewer calls arrive in a given second.

The Poisson Distribution

The number of phone calls going through a certain exchange per second has a Poisson distribution with $\lambda=6$

Find 8 or fewer calls arrive in a given second.
Solution: 0.84723

The Poisson Distribution

The number of phone calls going through a certain exchange per second has a Poisson distribution with $\lambda=6$

Find 8 or fewer calls arrive in a given second.
Solution: 0.84723
ppois(8, 6)

The Poisson Distribution

The number of gypsy moth egg masses per square yard of bark surface has a poisson distribution.

If the average number of masses per square yard is 3 , find the probability that more than 6 egg masses are found in a give square yard.

The Poisson Distribution

The number of gypsy moth egg masses per square yard of bark surface has a poisson distribution.

If the average number of masses per square yard is 3 , find the probability that more than 6 egg masses are found in a give square yard.

Solution: 0.083918

The Poisson Distribution

The number of gypsy moth egg masses per square yard of bark surface has a poisson distribution.

If the average number of masses per square yard is 3 , find the probability that more than 6 egg masses are found in a give square yard.

Solution: 0.083918
1 - ppois(5,3)

The Poisson Distribution

The number of tadpoles per liter of pond water has a poisson distribution with a mean of 28 .

Find the probability that a 1 -liter sample has 40 or more tadpoles.

The Poisson Distribution

The number of tadpoles per liter of pond water has a poisson distribution with a mean of 28 .

Find the probability that a 1 -liter sample has 40 or more tadpoles.

Solution: 0.01898

The Poisson Distribution

The number of tadpoles per liter of pond water has a poisson distribution with a mean of 28 .

Find the probability that a 1 -liter sample has 40 or more tadpoles.

Solution: 0.01898
1 - ppois(39, 28)

The Poisson Distribution

The number of deer ticks per square yard has a Poisson distribution with a mean of 12 .

Find the probability that a certain square yard has fewer than 11 ticks.

The Poisson Distribution

The number of deer ticks per square yard has a Poisson distribution with a mean of 12 .

Find the probability that a certain square yard has fewer than 11 ticks.

Solution: 0.65277

The Poisson Distribution

The number of deer ticks per square yard has a Poisson distribution with a mean of 12 .

Find the probability that a certain square yard has fewer than 11 ticks.

Solution: 0.65277
ppois(10, 12)

