
Discrete Distributions
The next distribution we will consider is the Poisson
distribution.
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The next distribution we will consider is the Poisson
distribution.

The Poisson is a limiting form of the binomial distribution
that you get if you let n become very large and the
probability of success p very small, but always keep np = λ

the same.
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Discrete Distributions
The next distribution we will consider is the Poisson
distribution.

The Poisson is a limiting form of the binomial distribution
that you get if you let n become very large and the
probability of success p very small, but always keep np = λ

the same.

Another way to say this is that we take binomial random
variables with larger and larger n, but we keep the expected
number of successes np = λ the same for all of them.
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Discrete Distributions
The next distribution we will consider is the Poisson
distribution.

The Poisson is a limiting form of the binomial distribution
that you get if you let n become very large and the
probability of success p very small, but always keep np = λ

the same.

Another way to say this is that we take binomial random
variables with larger and larger n, but we keep the expected
number of successes np = λ the same for all of them.

The limit of the distribution of such a sequence of random
variables as n → ∞ is a Poisson.
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The Poisson Distribution
The probability mass function is:

f(x) = p(x; λ) =
e−λλx

x!
, x = 0, 1, 2, 3, . . .
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The Poisson Distribution
The probability mass function is:

f(x) = p(x; λ) =
e−λλx

x!
, x = 0, 1, 2, 3, . . .

E(X) = λ V (X) = λ
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The Poisson Distribution
The probability mass function is:

f(x) = p(x; λ) =
e−λλx

x!
, x = 0, 1, 2, 3, . . .

E(X) = λ V (X) = λ

Computation:
Value R Spreadsheet
P (X = x) dpois(x, λ) = POISSON(x, λ, FALSE)

P (X ≤ x) ppois(x, λ) = POISSON(x, λ, TRUE)
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The Poisson Distribution
Now we will perform some numerical experiments.
First generate a sample of 1, 000, 000 observations for a
poisson experiment with λ = 4:

x<-rpois(1000000,4)
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The Poisson Distribution
Now we will perform some numerical experiments.
First generate a sample of 1, 000, 000 observations for a
poisson experiment with λ = 4:

x<-rpois(1000000,4)

Now plot a histogram of the results:

hist(x)
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The Poisson Distribution
Now we will perform some numerical experiments.
First generate a sample of 1, 000, 000 observations for a
poisson experiment with λ = 4:

x<-rpois(1000000,4)

Now plot a histogram of the results:

hist(x)

To get a table of the results enter

table(x)
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The Poisson Distribution
Now we will perform some numerical experiments.
First generate a sample of 1, 000, 000 observations for a
poisson experiment with λ = 4:

x<-rpois(1000000,4)

Now plot a histogram of the results:

hist(x)

To get a table of the results enter

table(x)

The results through X = 6 should look something like:
0 1 2 3 4 5

18391 72886 146819 195399 195578 156312 103988
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The Poisson Distribution

0 1 2 3 4 5
18391 72886 146819 195399 195578 156312 103988

Now compare the frequencies to the probabilities.
First compute the probability that X = 0:

dpois(0,4)
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The Poisson Distribution

0 1 2 3 4 5
18391 72886 146819 195399 195578 156312 103988

Now compare the frequencies to the probabilities.
First compute the probability that X = 0:

dpois(0,4)

The result should be something like

[1] 0.1831
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The Poisson Distribution

0 1 2 3 4 5
18391 72886 146819 195399 195578 156312 103988

Now compare the frequencies to the probabilities.
First compute the probability that X = 0:

dpois(0,4)

The result should be something like

[1] 0.1831

To get the probability that X = 1 enter

dpois(1,4)
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The Poisson Distribution

0 1 2 3 4 5
18391 72886 146819 195399 195578 156312 103988

Now compare the frequencies to the probabilities.
First compute the probability that X = 0:

dpois(0,4)

The result should be something like

[1] 0.1831

To get the probability that X = 1 enter

dpois(1,4)

This time the results should look something like:

[1] 0.07326
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The Poisson Distribution

0 1 2 3 4 5
18391 72886 146819 195399 195578 156312 103988

Next compute the probability that X = 2:

dpois(2,4)
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The Poisson Distribution

0 1 2 3 4 5
18391 72886 146819 195399 195578 156312 103988

Next compute the probability that X = 2:

dpois(2,4)

The result should be something like

[1] 0.146525
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The Poisson Distribution

0 1 2 3 4 5
18391 72886 146819 195399 195578 156312 103988

Next compute the probability that X = 2:

dpois(2,4)

The result should be something like

[1] 0.146525

To get the probability that X = 5 enter

dnbinom(5,3,0.4)
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The Poisson Distribution

0 1 2 3 4 5
18391 72886 146819 195399 195578 156312 103988

Next compute the probability that X = 2:

dpois(2,4)

The result should be something like

[1] 0.146525

To get the probability that X = 5 enter

dnbinom(5,3,0.4)

This time the results should look something like:

[1] 0.175467
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The Poisson Distribution
The expected value E(X) in this case is:

E(X) = λ = 4
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The Poisson Distribution
The expected value E(X) in this case is:

E(X) = λ = 4

To compute the sample mean x, enter

mean(x)
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The Poisson Distribution
The expected value E(X) in this case is:

E(X) = λ = 4

To compute the sample mean x, enter

mean(x) The result should be something like

[1] 3.999121

Discrete Distributions – p. 6/12



The Poisson Distribution
The variance V (X) in this case is:

V (X) = λ = 4
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The Poisson Distribution
The variance V (X) in this case is:

V (X) = λ = 4

To compute the sample variance s2, enter

var(x)
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The Poisson Distribution
The variance V (X) in this case is:

V (X) = λ = 4

To compute the sample variance s2, enter

var(x) The result should be something like

[1] 3.999059
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The Poisson Distribution
The number of cars arriving per minute at a toll booth has a
poisson distribution, and the average number of cars
arriving per minute is 12.

Find the probability that exactly 10 cars arrive in a certain
minute.
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The Poisson Distribution
The number of cars arriving per minute at a toll booth has a
poisson distribution, and the average number of cars
arriving per minute is 12.

Find the probability that exactly 10 cars arrive in a certain
minute.

Solution: 0.104837
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The Poisson Distribution
The number of cars arriving per minute at a toll booth has a
poisson distribution, and the average number of cars
arriving per minute is 12.

Find the probability that exactly 10 cars arrive in a certain
minute.

Solution: 0.104837

dpois(10, 12)
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The Poisson Distribution
The number of phone calls going through a certain
exchange per second has a Poisson distribution with λ = 6

Find 8 or fewer calls arrive in a given second.
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The Poisson Distribution
The number of phone calls going through a certain
exchange per second has a Poisson distribution with λ = 6

Find 8 or fewer calls arrive in a given second.

Solution: 0.84723
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The Poisson Distribution
The number of phone calls going through a certain
exchange per second has a Poisson distribution with λ = 6

Find 8 or fewer calls arrive in a given second.

Solution: 0.84723

ppois(8, 6)
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The Poisson Distribution
The number of gypsy moth egg masses per square yard of
bark surface has a poisson distribution.

If the average number of masses per square yard is 3, find
the probability that more than 6 egg masses are found in a
give square yard.
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The Poisson Distribution
The number of gypsy moth egg masses per square yard of
bark surface has a poisson distribution.

If the average number of masses per square yard is 3, find
the probability that more than 6 egg masses are found in a
give square yard.

Solution: 0.083918
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The Poisson Distribution
The number of gypsy moth egg masses per square yard of
bark surface has a poisson distribution.

If the average number of masses per square yard is 3, find
the probability that more than 6 egg masses are found in a
give square yard.

Solution: 0.083918

1 − ppois(5, 3)
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The Poisson Distribution
The number of tadpoles per liter of pond water has a
poisson distribution with a mean of 28.

Find the probability that a 1-liter sample has 40 or more
tadpoles.
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The Poisson Distribution
The number of tadpoles per liter of pond water has a
poisson distribution with a mean of 28.

Find the probability that a 1-liter sample has 40 or more
tadpoles.

Solution: 0.01898
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The Poisson Distribution
The number of tadpoles per liter of pond water has a
poisson distribution with a mean of 28.

Find the probability that a 1-liter sample has 40 or more
tadpoles.

Solution: 0.01898

1 − ppois(39, 28)
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The Poisson Distribution
The number of deer ticks per square yard has a Poisson
distribution with a mean of 12.

Find the probability that a certain square yard has fewer
than 11 ticks.
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The Poisson Distribution
The number of deer ticks per square yard has a Poisson
distribution with a mean of 12.

Find the probability that a certain square yard has fewer
than 11 ticks.

Solution: 0.65277
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The Poisson Distribution
The number of deer ticks per square yard has a Poisson
distribution with a mean of 12.

Find the probability that a certain square yard has fewer
than 11 ticks.

Solution: 0.65277

ppois(10, 12)
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