
Random Vectors
We previously introduced the idea of a random vector as a
vector whose components are random variables:

X =
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Xn
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Random Vectors
We previously introduced the idea of a random vector as a
vector whose components are random variables:

X =













X1

X2

...
Xn













We suppose each of the random variables Xi has an
expected value and variance, and each pair has a
covariance:

E(Xi) = µi V (Xi) = σ2

i Cov(Xi, Xj) = σij
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Random Vectors
We can think of the expected values as a vector of
constants,

E(X) =













E(X1)

E(X2)
...

E(Xn)













=













µ1

µ2

...
µn













= µ
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Random Vectors
It is usually convenient to represent the variances and
covariances as a matrix,

V =













σ2
1

σ12 σ13 · · · σ1n

σ12 σ2
2

σ23 · · · σ2n

...
... . . . ...

σ1n σ2n · · · σ2
n
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Random Vectors
It is usually convenient to represent the variances and
covariances as a matrix,

V =













σ2
1

σ12 σ13 · · · σ1n

σ12 σ2
2

σ23 · · · σ2n

...
... . . . ...

σ1n σ2n · · · σ2
n













V is called the variance-covariance matrix of X.
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Random Vectors
Among random vectors, the most important special case is
one in which the components of X all have the same
distribution, and are independent of each other.
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Random Vectors
Among random vectors, the most important special case is
one in which the components of X all have the same
distribution, and are independent of each other.

In this case the Xi are said to be independent, identically
distributed or IID.

If the components of X are IID, they all have the same
expected value µ, so

E(X) =













E(X1)

E(X2)
...

E(Xn)













=













µ

µ
...
µ













= µ
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Random Vectors
When the Xi are IID, the variance-covariance matrix
simplifies dramatically.

Since independent random variables always have zero
covariance, all off diagonal terms are zero.
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Random Vectors
When the Xi are IID, the variance-covariance matrix
simplifies dramatically.

Since independent random variables always have zero
covariance, all off diagonal terms are zero.

In addition, the variance of each Xi is the same, so for a
vector of IID random variables each with variance
V (Xi) = σ2, we can write

V =













σ2

σ2

. . .

σ2
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Random Vectors
In this case the matrix V has all off-diagonal terms equal to
zero, and is said to be a diagonal matrix.

V =













σ2

σ2

. . .

σ2













= σ2













1

1
. . .

1
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Random Vectors
In this case the matrix V has all off-diagonal terms equal to
zero, and is said to be a diagonal matrix.

V =













σ2

σ2

. . .

σ2













= σ2













1

1
. . .

1













The diagonal matrix with all entries equal to one occurs
frequently. It is denoted by I and is called the identity
matrix because, for any n × n square matrix A,

AI = IA = A
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Random Vectors
In summary, in the case of vector X of IID random variables
each with expected value µ and variance σ2,

E(X) =













µ

µ
...
µ













= µ













1

1
...
1













and

V =













σ2

σ2

. . .

σ2













= σ2













1

1
. . .

1













= σ2I
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Linear Combinations of IID Random V
Linear combinations of IID random variables occur
frequently because:

Random samples are often considered to be IID
random vectors

The sample mean is a linear combination (all weights
equal to 1/n)
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Linear Combinations of IID Random V
Linear combinations of IID random variables occur
frequently because:

Random samples are often considered to be IID
random vectors

The sample mean is a linear combination (all weights
equal to 1/n)

In particular, the the expected value of the mean of an IID
random vector X, which we can write as

E(β′X) with β =













1

n
1

n
...
1

n
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Linear Combinations of IID Random V
From our pervious work with expected values of linear
combinations, we know that

E(β′X) =
[

1

n
1

n
· · · 1

n

]













µ

µ
...
µ













=
n

∑

i=1

µ

n
= µ

Random Samples – p. 9/19



Linear Combinations of IID Random V
From our pervious work with expected values of linear
combinations, we know that

E(β′X) =
[

1

n
1

n
· · · 1

n

]













µ

µ
...
µ













=
n

∑

i=1

µ

n
= µ

The variance V ar(β′X) is β′V β, or

[

1

n
1

n
· · · 1

n

]













σ2

σ2

. . .

σ2

























1

n
1

n
...
1

n













=
σ2

n
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Linear Combinations of IID Random V
The results for expected values and variances of linear
combinations hold for any probability distrubition with finite
expected value and variance.

They enable us to determine the expected value and
variance of any linear combination of random variables.
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Linear Combinations of IID Random V
The results for expected values and variances of linear
combinations hold for any probability distrubition with finite
expected value and variance.

They enable us to determine the expected value and
variance of any linear combination of random variables.

They do not, however, tell us what the distribution of the
linear combination is.

So, we cannot yet answer a question like:

"What is the probability that the average value of a vector of
8 IID random variables with mean 2 and variance 4 lies
between 1 and 3?"
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Linear Combinations of IID Random V
The results for expected values and variances of linear
combinations hold for any probability distrubition with finite
expected value and variance.

They enable us to determine the expected value and
variance of any linear combination of random variables.

They do not, however, tell us what the distribution of the
linear combination is.

So, we cannot yet answer a question like:

"What is the probability that the average value of a vector of
8 IID random variables with mean 2 and variance 4 lies
between 1 and 3?"

This type of question comes up very frequently in statistics.
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Linear Combinations of IID Random V
The following results will often allow us to answer these
questions.

Theorem If the random vector X has a multivariate normal
distribution with mean vector µ and variance-covariance
matrix V ,

X ∼ N(µ, V )

then any linear combination β′X also has a normal
distribution, with

β′X ∼ N(β′µ, β′V β)
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Sample Means
The most important special case occurs when the
components of X are IID N(µ, σ) representing a rancom
sample, and all elements of β are 1/n.
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Sample Means
The most important special case occurs when the
components of X are IID N(µ, σ) representing a rancom
sample, and all elements of β are 1/n.

In this case, β′X is called the sample mean

β =













1

n
1

n
...
1

n













then E(β′X) = β′µ = µ

and

V ar(β′X) = β′(σ2I)β =
σ2

n
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Sample Means
Theorem If X is a vector of IID random variables each
having a N(µ, σ) distribution, then the sample mean
defined by

x =
1

n

n
∑

i=1

Xi

has a normal distribution with mean µ and variance σ2/n
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Sample Means
Theorem If X is a vector of IID random variables each
having a N(µ, σ) distribution, then the sample mean
defined by

x =
1

n

n
∑

i=1

Xi

has a normal distribution with mean µ and variance σ2/n

In the usual notation, if the Xi are IID with

Xi ∼ N (µ, σ) , i = 1, 2, . . . , n

then

x ∼ N

(

µ,
σ
√

n

)
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Sample Means
Example SAT scores may be assumed to be normally
distributed with mean µ = 500 and standard deviation
σ = 100.

What is the distribution of the mean x of a random sample
of 400 SAT scores?
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Sample Means
Example SAT scores may be assumed to be normally
distributed with mean µ = 500 and standard deviation
σ = 100.

What is the distribution of the mean x of a random sample
of 400 SAT scores?

The theorem tells us that

x ∼ N

(

µ,
σ
√

n

)

= N

(

500,
100
√

400

)

= N(500, 5)
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Sample Means
Example Some IQ scores may be assumed to be normally
distributed with mean µ = 100 and standard deviation
σ = 15.

What is the distribution of the mean x of a random sample
of 100 IQ scores?
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Sample Means
Example Some IQ scores may be assumed to be normally
distributed with mean µ = 100 and standard deviation
σ = 15.

What is the distribution of the mean x of a random sample
of 100 IQ scores?

The theorem tells us that

x ∼ N

(

µ,
σ
√

n

)

= N

(

100,
15

√
100

)

= N(100, 1.5)
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Sample Means
Example What is the probability that the mean of a random
sample of size 5 from a N(3, 2) distribution lies between 2
and 4?
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Sample Means
Example What is the probability that the mean of a random
sample of size 5 from a N(3, 2) distribution lies between 2
and 4?

The theorem tells us that

x ∼ N

(

3,
2
√

5

)

The mean is considered a single observation from this
distribution, so the probability that it falls between 2 and 4 is:

pnorm(4,3,2/sqrt(5))-pnorm(2,3,2/sqrt(5)) or
0.7364475
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Sample Means
Example What is the probability that the mean of a random
sample of size 10 from a N(120, 25) distribution is less than
123?
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Sample Means
Example What is the probability that the mean of a random
sample of size 10 from a N(120, 25) distribution is less than
123?

The theorem tells us that

x ∼ N

(

120,
25
√

10

)

The mean is considered a single observation from this
distribution, so the probability that it is less than 123 is:

pnorm(123,120,25/sqrt(10)) or 0.6478318
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Sample Means
Example What is the probability that the mean of a random
sample of size 100 from a N(500, 100) distribution is less
than 495 or more than 505?
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Sample Means
Example What is the probability that the mean of a random
sample of size 100 from a N(500, 100) distribution is less
than 495 or more than 505?

The theorem tells us that

x ∼ N

(

500,
100
√

100

)

The mean is considered a single observation from this
distribution, so the probability that it falls between 495 and
505 is:

1-pnorm(505,500,100/sqrt(100))+pnorm(495,500,100/sqrt(10
or 0.6170751
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Sample Means
Example What is the probability that the mean of a random
sample of size 200 from a N(100, 15) distribution is more
than 98?
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Sample Means
Example What is the probability that the mean of a random
sample of size 200 from a N(100, 15) distribution is more
than 98?

The theorem tells us that

x ∼ N

(

100,
15

√
200

)

The mean is considered a single observation from this
distribution, so the probability that it is more than 98 is:

1-pnorm(98,100,15/sqrt(200)) or 0.9703268
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