
Normal Approximation to Binomial
When the number of trials in a binomial experiment is large,
the probability distribution of the number of successes can
be approximated by a normal distribution.
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Normal Approximation to Binomial
When the number of trials in a binomial experiment is large,
the probability distribution of the number of successes can
be approximated by a normal distribution.

If n is the number of trials and p is the probability of
success, the distribution of the number of successes is
approximately normal with:

mean µ = np and σ =
√

n · p(1 − p)
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Normal Approximation
Suppose 63 percent of people in a large urban area
actually support a certain political candidate. If a poll
samples 1000 voters, find the approximate probability that
610 or fewer of those polled support the candidate.
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Normal Approximation
Suppose 63 percent of people in a large urban area
actually support a certain political candidate. If a poll
samples 1000 voters, find the approximate probability that
610 or fewer of those polled support the candidate.

Approximate this as a normal distribution with

mean = 1000 · 0.63 = 630

and

standard deviation =
√

1000 · 0.63 · 0.37 = 15.36

so the probability is pnorm(610, 630, 15.36) which gives 0.0964
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Normal Approximation
Values of the cumulative distribution function for the normal
distribution can be obtained from spreadsheets.
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Normal Approximation
Values of the cumulative distribution function for the normal
distribution can be obtained from spreadsheets.

The formula for the previous example is:

=NORMDIST(610,630,15.36,TRUE) which gives 0.0964
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Normal Approximation
The cumulative distribution function values for the normal
distribution can also be obtained from spreadsheets.
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Normal Approximation
The cumulative distribution function values for the normal
distribution can also be obtained from spreadsheets.

The formula for the previous example’s solution is:

=NORMDIST(650,630,15.36,TRUE)
-NORMDIST(610,630,15.36,TRUE) which also gives 0.807
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Percentiles
Suppose 63 percent of people in a large urban area
actually support a certain political candidate. If a poll
samples 1000 voters, what is the 75th percentile of the
number of supporters in the sample?
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Percentiles
Suppose 63 percent of people in a large urban area
actually support a certain political candidate. If a poll
samples 1000 voters, what is the 75th percentile of the
number of supporters in the sample?

Approximate this as a normal distribution with

mean = np = 1000 · 0.63 = 630

and

standard deviation =
√

np(1 − p) =
√

1000 · 0.63 · 0.37 = 15.36

so the percentile is qnorm(0.75, 630, 15.36) which is 640.
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Percentiles
Percentiles for the normal distribution can also be obtained
from spreadsheets.
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Percentiles
Percentiles for the normal distribution can also be obtained
from spreadsheets.

For the previous example the formula would be:

=NORMINV(0.75,630,15.36) which is 640.
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The Central Limit Theorem
If X1, X2, . . . , Xn is a random sample from a distribution
with mean µ and standard deviation σ, then
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X) has an approximately normal distribution with: µ
X

= µ

and
σ

X
= σ/

√
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The Sample Mean
The following result is very useful:

If X1, X2, . . . , Xn is a random sample from a distribution
with mean µ and standard deviation σ, then the following
statements are true:
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The Sample Mean
If, in addition, the underlying population is normal, we can
make a stronger statement:

If X1, X2, . . . , Xn is a random sample from a N(µ, σ), then
the following statement is true:
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The Central Limit Theorem
If X1, X2, . . . , Xn is a random sample from a distribution
with mean µ and standard deviation σ, then
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