Normal Approximation to Binomial

When the number of trials in a binomial experiment is large, the probability distribution of the number of successes can be approximated by a normal distribution.

Normal Approximation to Binomial

When the number of trials in a binomial experiment is large, the probability distribution of the number of successes can be approximated by a normal distribution.
If n is the number of trials and p is the probability of success, the distribution of the number of successes is approximately normal with:

$$
\text { mean } \mu=n p \quad \text { and } \quad \sigma=\sqrt{n \cdot p(1-p)}
$$

Normal Approximation

Suppose 63 percent of people in a large urban area actually support a certain political candidate. If a poll samples 1000 voters, find the approximate probability that 610 or fewer of those polled support the candidate.

Normal Approximation

Suppose 63 percent of people in a large urban area actually support a certain political candidate. If a poll samples 1000 voters, find the approximate probability that 610 or fewer of those polled support the candidate.
Approximate this as a normal distribution with

$$
\operatorname{mean}=1000 \cdot 0.63=630
$$

and
standard deviation $=\sqrt{1000 \cdot 0.63 \cdot 0.37}=15.36$
so the probability is pnorm $(610,630,15.36)$ which gives 0.0964

Normal Approximation

Values of the cumulative distribution function for the normal distribution can be obtained from spreadsheets.

Normal Approximation

Values of the cumulative distribution function for the normal distribution can be obtained from spreadsheets.
The formula for the previous example is:
=NORMDIST(610,630,15.36,TRUE) which gives 0.0964

Normal Approximation

Suppose 63 percent of people in a large urban area actually support a certain political candidate. If a poll samples 1000 voters, find the approximate probability that 610 or fewer of those polled support the candidate.

Normal Approximation

Suppose 63 percent of people in a large urban area actually support a certain political candidate. If a poll samples 1000 voters, find the approximate probability that 610 or fewer of those polled support the candidate.
Approximate this as a normal distribution with

$$
\operatorname{mean}=1000 \cdot 0.63=630
$$

and
standard deviation $=\sqrt{1000 \cdot 0.63 \cdot 0.37}=15.36$
so the probability is pnorm $(610,630,15.36)$ which gives 0.0964

Normal Approximation

The cumulative distribution function values for the normal distribution can also be obtained from spreadsheets.

Normal Approximation

The cumulative distribution function values for the normal distribution can also be obtained from spreadsheets.
The formula for the previous example's solution is:
=NORMDIST(650,630,15.36,TRUE)
-NORMDIST(610,630,15.36,TRUE) which also gives 0.807

Percentiles

Suppose 63 percent of people in a large urban area actually support a certain political candidate. If a poll samples 1000 voters, what is the $75^{\text {th }}$ percentile of the number of supporters in the sample?

Percentiles

Suppose 63 percent of people in a large urban area actually support a certain political candidate. If a poll samples 1000 voters, what is the $75^{\text {th }}$ percentile of the number of supporters in the sample?
Approximate this as a normal distribution with

$$
\text { mean }=n p=1000 \cdot 0.63=630
$$

and
standard deviation $=\sqrt{n p(1-p)}=\sqrt{1000 \cdot 0.63 \cdot 0.37}=15.36$
so the percentile is qnorm $(0.75,630,15.36)$ which is 640.

Percentiles

Percentiles for the normal distribution can also be obtained from spreadsheets.

Percentiles

Percentiles for the normal distribution can also be obtained from spreadsheets.
For the previous example the formula would be:
$=\operatorname{NORMINV}(0.75,630,15.36)$ which is 640.

The Central Limit Theorem

If $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample from a distribution with mean μ and standard deviation σ, then

The Central Limit Theorem

If $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample from a distribution with mean μ and standard deviation σ, then
\bar{X}) has an approximately normal distribution with: $\mu \bar{X}=\mu$
and

$$
\sigma_{\bar{X}}=\sigma / \sqrt{n}
$$

The Central Limit Theorem

If $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample from a distribution with mean μ and standard deviation σ, then
\bar{X}) has an approximately normal distribution with: $\mu \bar{X}=\mu$
and

$$
\sigma_{\bar{X}}=\sigma / \sqrt{n}
$$

The Central Limit Theorem

If $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample from a distribution with mean μ and standard deviation σ, then
\bar{X}) has an approximately normal distribution with: $\mu \bar{X}=\mu$
and

$$
\sigma_{\bar{X}}=\sigma / \sqrt{n}
$$

The Sample Mean

The following result is very useful:
If $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample from a distribution with mean μ and standard deviation σ, then the following statements are true:

The Sample Mean

The following result is very useful:
If $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample from a distribution with mean μ and standard deviation σ, then the following statements are true:

$$
E(\bar{X})=\mu_{\bar{X}}=\mu
$$

The Sample Mean

The following result is very useful:
If $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample from a distribution with mean μ and standard deviation σ, then the following statements are true:

$$
E(\bar{X})=\mu_{\bar{X}}=\mu
$$

$$
V(\bar{X})=\sigma_{\bar{X}}^{2}=\sigma^{2} / n
$$

The Sample Mean

The following result is very useful:
If $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample from a distribution with mean μ and standard deviation σ, then the following statements are true:

$$
E(\bar{X})=\mu_{\bar{X}}=\mu
$$

$$
V(\bar{X})=\sigma_{\bar{X}}^{2}=\sigma^{2} / n
$$

The Sample Mean

If, in addition, the underlying population is normal, we can make a stronger statement:

If $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample from a $N(\mu, \sigma)$, then the following statement is true:

The Sample Mean

If, in addition, the underlying population is normal, we can make a stronger statement:

If $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample from a $N(\mu, \sigma)$, then the following statement is true:
\bar{X}) has a normal distribution with: $\mu_{\bar{X}}=\mu$
and

$$
\sigma_{\bar{X}}=\sigma / \sqrt{n}
$$

The Sample Mean

If, in addition, the underlying population is normal, we can make a stronger statement:

If $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample from a $N(\mu, \sigma)$, then the following statement is true:
\bar{X}) has a normal distribution with: $\mu_{\bar{X}}=\mu$
and

$$
\sigma_{\bar{X}}=\sigma / \sqrt{n}
$$

The Sample Mean

If, in addition, the underlying population is normal, we can make a stronger statement:

If $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample from a $N(\mu, \sigma)$, then the following statement is true:
\bar{X}) has a normal distribution with: $\mu_{\bar{X}}=\mu$
and

$$
\sigma_{\bar{X}}=\sigma / \sqrt{n}
$$

The Central Limit Theorem

If $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample from a distribution with mean μ and standard deviation σ, then

The Central Limit Theorem

If $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample from a distribution with mean μ and standard deviation σ, then
\bar{X}) has an approximately normal distribution with: $\mu \bar{X}=\mu$
and

$$
\sigma_{\bar{X}}=\sigma / \sqrt{n}
$$

The Central Limit Theorem

If $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample from a distribution with mean μ and standard deviation σ, then
\bar{X}) has an approximately normal distribution with: $\mu \bar{X}=\mu$
and

$$
\sigma_{\bar{X}}=\sigma / \sqrt{n}
$$

The Central Limit Theorem

If $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample from a distribution with mean μ and standard deviation σ, then
\bar{X}) has an approximately normal distribution with: $\mu \bar{X}=\mu$
and

$$
\sigma_{\bar{X}}=\sigma / \sqrt{n}
$$

