Definitions

Probability theorey is built on the concept of an experiment

Definitions

Probability theorey is built on the concept of an experiment
An experiment is a procedure, whether physical or conceptual, with the following properties:

- The experiment is repeatable
- Each time the experiment is performed, exactly one of a set of possible outcomes called the sample space occurs

Definitions

A probability experiment is described mathematically by a probability space.

Definitions

A probability experiment is described mathematically by a probability space.
The probability space consists of three components:

- The sample space Ω which is the set of possible outcomes of the experiment
- A collection of subsets of Ω that represent events
- A probability measure that associates a number between 0 and 1 , inclusive with each event

Definitions

Sample spaces fall into two categories: discrete and continuous

Definitions

Sample spaces fall into two categories: discrete and continuous

Some examples of experiments with discrete sample spaces:

- Tossing a coin: $\Omega=\{H, T\}$
- Rolling a die: $\Omega=\{1,2,3,4,5,6\}$
- Tossing a coin twice: $\Omega=\{H H, H T, T H, T T\}$
- Tossing a coint until the first heads:

$$
\Omega=\{H, T H, T T H, T T T H, T T T T H, \ldots\}
$$

Definitions

Experiments with continuous sample spaces:

- Choose a number between zero and one, inclusive: $\Omega=\{x: 0 \leq x \leq 1\}$
- Choose an individual from a bell curve distribution:

$$
\Omega=\{x:-\infty<x<\infty\}
$$

Definitions

Experiments with continuous sample spaces:

- Choose a number between zero and one, inclusive: $\Omega=\{x: 0 \leq x \leq 1\}$
- Choose an individual from a bell curve distribution:

$$
\Omega=\{x:-\infty<x<\infty\}
$$

Definitions

The second component of the probability space is a collection of subsets of Ω representing events.

Definitions

The second component of the probability space is a collection of subsets of Ω representing events.
We don't have to pay too much attention to this part of the definition because we will generally use one of collections.

Definitions

The second component of the probability space is a collection of subsets of Ω representing events.
We don't have to pay too much attention to this part of the definition because we will generally use one of collections.

If the sample space is discrete, we will use the collection of all possible subsets of ω, which is called the power set of ω and denoted (Ω)

Definitions

If the probability space is continuous, it is not possible to use the collection of all possible subsets.

Definitions

If the probability space is continuous, it is not possible to use the collection of all possible subsets.

Fortunately, there is a collection that is easy to describe that we can use for continuous sample spaces.

Definitions

If the probability space is continuous, it is not possible to use the collection of all possible subsets.
Fortunately, there is a collection that is easy to describe that we can use for continuous sample spaces.

If the sample space is continuous, we start with all subsets of the form

$$
S=\{x:-\infty<x \leq k\}
$$

Definitions

If the probability space is continuous, it is not possible to use the collection of all possible subsets.
Fortunately, there is a collection that is easy to describe that we can use for continuous sample spaces.

If the sample space is continuous, we start with all subsets of the form

$$
S=\{x:-\infty<x \leq k\}
$$

Then we expand the collection to include all compliments, and expand again to include all finite or countably infinite unions.

Definitions

If the probability space is continuous, it is not possible to use the collection of all possible subsets.
Fortunately, there is a collection that is easy to describe that we can use for continuous sample spaces.

If the sample space is continuous, we start with all subsets of the form

$$
S=\{x:-\infty<x \leq k\}
$$

Then we expand the collection to include all compliments, and expand again to include all finite or countably infinite unions.
This collection can be described as the set of all intervals of the form $(-\infty, k]$ and their compliments, plus all finite or countable unions of these sets.

Definitions

In both cases (discrete and continuous), the collection of subsets \mathcal{S} has the following properties:

- \mathcal{S} includes Ω itself
- If a subset E of Ω belongs to \mathcal{S}, so does its compliment
- If each of the subsets $E_{n}, n=1,2,3, \ldots$ belongs to \mathcal{S}, so does their union.

Definitions

In both cases (discrete and continuous), the collection of subsets \mathcal{S} has the following properties:

- \mathcal{S} includes Ω itself
- If a subset E of Ω belongs to \mathcal{S}, so does its compliment
- If each of the subsets $E_{n}, n=1,2,3, \ldots$ belongs to \mathcal{S}, so does their union.

The technical term for a collection of subsets of this form is a σ-algebra.

Definitions

In both cases (discrete and continuous), the collection of subsets \mathcal{S} has the following properties:

- \mathcal{S} includes Ω itself
- If a subset E of Ω belongs to \mathcal{S}, so does its compliment
- If each of the subsets $E_{n}, n=1,2,3, \ldots$ belongs to \mathcal{S}, so does their union.

The technical term for a collection of subsets of this form is a σ-algebra.

Even though the requirement that the set of events be a σ-algebra on the sample space Ω is a key assumption, we will not pay much attention because the two collections we have defined above are both σ-algebras on Ω.

Definitions

Once we have defined the sample space Ω that contains all possible outcomes and the collection of subsets (S) that represents the events we want to consider, one more component is required to complete our probability space.

Definitions

Once we have defined the sample space Ω that contains all possible outcomes and the collection of subsets (S) that represents the events we want to consider, one more component is required to complete our probability space.
The final component is a function P called a probability measure that assigns a real number $p(E)$ in the range $0 \leq p(E) \leq 1$ to every element of (S).

Definitions

Once we have defined the sample space Ω that contains all possible outcomes and the collection of subsets (S) that represents the events we want to consider, one more component is required to complete our probability space.
The final component is a function P called a probability measure that assigns a real number $p(E)$ in the range $0 \leq p(E) \leq 1$ to every element of (S).

At the most basic level, every probability experiment will be associated with a probability space having the three components we have defined:

- A sample space Ω
- A collection (S) of subsets of Ω representing events
- A probability measure that assigns a probability value between zero an one to everv event

Definitions

The collection of subsets (S), whether we define it as the power set of the sample space Ω, or a more restricted sigma algebra, contains those subsets of Ω that we will consider to be events

Definitions

The collection of subsets (S), whether we define it as the power set of the sample space Ω, or a more restricted sigma algebra, contains those subsets of Ω that we will consider to be events
Every time the experiment is performed, the result is precisely one element of the sample space Ω.

Definitions

An event that consists of a single element of Ω is called a simple event

Definitions

An event that consists of a single element of Ω is called a simple event

The event that contains no outcomes is called the null event and always has probability zero.

Definitions

An event that consists of a single element of Ω is called a simple event

The event that contains no outcomes is called the null event and always has probability zero.

For any event E, the event that consists of every element of Ω NOT in E is called the compliment of E, and denoted by E^{c} or E^{\prime}.

Definitions

An event that consists of a single element of Ω is called a simple event

The event that contains no outcomes is called the null event and always has probability zero.

For any event E, the event that consists of every element of Ω NOT in E is called the compliment of E, and denoted by E^{c} or E^{\prime}.

In the die roll experiment, the compliment of the event $E=\{2,4\}$ is $E^{\prime}=\{1,3,5,6\}$

