
Linear Models
The word "model" is usually used in situations where we
want to predict or forecast something we would like to know,
based on things we do know.
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want to predict or forecast something we would like to know,
based on things we do know.

Example: We want to predict the highest sustained wind
speed in a tropical storm at some point over the ocean, and
we know the barometric pressure.

In general, barometric pressure is related to wind speed:
Lower pressure is associated with a stronger storm, and a
stronger storm is associated with higher winds.
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Linear Models
The word "model" is usually used in situations where we
want to predict or forecast something we would like to know,
based on things we do know.

Example: We want to predict the highest sustained wind
speed in a tropical storm at some point over the ocean, and
we know the barometric pressure.

In general, barometric pressure is related to wind speed:
Lower pressure is associated with a stronger storm, and a
stronger storm is associated with higher winds.

A model is desirable because barometric pressure is more
stable than wind speed and can be measured more easily.
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Linear Models
Let’s consider a simple (if artificial) example. Suppose:

Y represents a quantity we want to predict

X represents a related quantity we can measure
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Let’s consider a simple (if artificial) example. Suppose:

Y represents a quantity we want to predict

X represents a related quantity we can measure

The simplest relationship that comes to mind is the linear
equation:

Y = βX

where β is some coefficient we can think of as a parameter
that can be estimated from a sample.
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Y represents a quantity we want to predict

X represents a related quantity we can measure

The simplest relationship that comes to mind is the linear
equation:

Y = βX

where β is some coefficient we can think of as a parameter
that can be estimated from a sample.

There is a philosophical problem with this model though: it
is deterministic.
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Linear Models
Let’s consider a simple (if artificial) example. Suppose:

Y represents a quantity we want to predict

X represents a related quantity we can measure

The simplest relationship that comes to mind is the linear
equation:

Y = βX

where β is some coefficient we can think of as a parameter
that can be estimated from a sample.

There is a philosophical problem with this model though: it
is deterministic.

The model says we know Y exactly if we know the value of
X.
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Deterministic Model
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Linear Models
This is not realistic in most cases.
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Linear Models
This is not realistic in most cases.

A better approach is to state the situation as a probability
model:

Consider Y to be a random variable, and write the model as

E(Y ) = βX
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Linear Models
This is not realistic in most cases.

A better approach is to state the situation as a probability
model:

Consider Y to be a random variable, and write the model as

E(Y ) = βX

Now we are simply stating that the expected value or
population mean µY of Y given X is βX
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Linear Models
This is not realistic in most cases.

A better approach is to state the situation as a probability
model:

Consider Y to be a random variable, and write the model as

E(Y ) = βX

Now we are simply stating that the expected value or
population mean µY of Y given X is βX

This avoids the requirement that every Y value exactly
match βX.
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Linear Models
For an individual observation Yi with associated value Xi,
we solve the problem of introducing randomness differently.
We represent an individual observation as:

Yi = βXi + ei

where:

β is a parameter (a constant to a frequentist, a random
variable to a Bayesian)

Xi is a known constant

ei is a random variable with expected value
E(ei) = µe = 0 and standard deviation σe

Introduction to Linear Models – p. 5/31



Linear Models
For an individual observation Yi with associated value Xi,
we solve the problem of introducing randomness differently.
We represent an individual observation as:

Yi = βXi + ei

where:

β is a parameter (a constant to a frequentist, a random
variable to a Bayesian)

Xi is a known constant

ei is a random variable with expected value
E(ei) = µe = 0 and standard deviation σe

Now Yi is a random variable. The randomness of Yi arises
from ei (and, in the Bayesian approach, also from β).
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Linear Models - Frequentist
From the properties of expected values, recall that

E(Yi) = E(βXi + ei)
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Linear Models - Frequentist
From the properties of expected values, recall that

E(Yi) = E(βXi + ei)

In the classical or frequentist approach, β and Xi are
constants, and the expected value of a constant is just its
value, so

E(Yi) = βXi + E(ei)
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Linear Models - Frequentist
From the properties of expected values, recall that

E(Yi) = E(βXi + ei)

In the classical or frequentist approach, β and Xi are
constants, and the expected value of a constant is just its
value, so

E(Yi) = βXi + E(ei)

We are assuming that E(ei) = 0 for each ei, so

E(Yi) = βXi + 0 = βXi

which agrees with the earlier result.
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Linear Models - Bayesian
Again recall from the properties of expected values that:

E(Yi) = E(βXi + ei)
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Linear Models - Bayesian
Again recall from the properties of expected values that:

E(Yi) = E(βXi + ei)

In the Bayesian approach, β is treated as a random variable
and we have to assume a particular probability distribution
for it. This is called the prior distribution of β. In the
expression below, E(β) represents the expected value of β

with respect to this distribution. Once again the Xi are
constants and are equal to their expected values, so this
time we can write

E(Yi) = E(β) · Xi + E(ei)
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Linear Models - Bayesian
Again recall from the properties of expected values that:

E(Yi) = E(βXi + ei)

In the Bayesian approach, β is treated as a random variable
and we have to assume a particular probability distribution
for it. This is called the prior distribution of β. In the
expression below, E(β) represents the expected value of β

with respect to this distribution. Once again the Xi are
constants and are equal to their expected values, so this
time we can write

E(Yi) = E(β) · Xi + E(ei)

We are assuming that E(ei) = 0 for each ei, so

E(Yi) = E(β)Xi + 0 = E(β)Xi
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Linear Models
So to a frequentist,

E(Yi) = βXi

and to a Bayesian

E(Yi) = E(β)Xi
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Linear Models
So to a frequentist,

E(Yi) = βXi

and to a Bayesian

E(Yi) = E(β)Xi

This illustrates the difference between the classical or
frequentist approach and the Bayesian approach.
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So to a frequentist,

E(Yi) = βXi

and to a Bayesian

E(Yi) = E(β)Xi

This illustrates the difference between the classical or
frequentist approach and the Bayesian approach.
To a frequentist, β is a constant, while a Bayesian considers
it to be a random variable having the prior distribution.

Introduction to Linear Models – p. 8/31



Linear Models
So to a frequentist,

E(Yi) = βXi

and to a Bayesian

E(Yi) = E(β)Xi

This illustrates the difference between the classical or
frequentist approach and the Bayesian approach.
To a frequentist, β is a constant, while a Bayesian considers
it to be a random variable having the prior distribution.
The prior distribution is subjective, and can be thought of as
a mathematical model of the researcher’s uncertainty about
the value of β.
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Linear Models
Which point of view is better, frequentist or Bayesian?
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Linear Models
Which point of view is better, frequentist or Bayesian?
This question has been (and continues to be) a source of
controversy and debate within the statistics community.
Both have advantages and disadvantages.
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Linear Models
Which point of view is better, frequentist or Bayesian?
This question has been (and continues to be) a source of
controversy and debate within the statistics community.
Both have advantages and disadvantages.
People in applied statistics usually try to be pragmatic and
choose an approach that makes sense in the context of the
data they have to work with and the question they are trying
to answer.
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Linear Models
The good news is that as the sample size becomes larger,
the most common frequentist techniques and their
Bayesian counterparts converge to the same limit.
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The good news is that as the sample size becomes larger,
the most common frequentist techniques and their
Bayesian counterparts converge to the same limit.

This limit is called the maximum likelihood estimate of β,
meaning an estimate that makes the probability of
observing the sample you actually got as large as possible.
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the most common frequentist techniques and their
Bayesian counterparts converge to the same limit.

This limit is called the maximum likelihood estimate of β,
meaning an estimate that makes the probability of
observing the sample you actually got as large as possible.

We saw a similar situation when we considered the normal
and t distributions for constructing confidence intervals.
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Linear Models
The good news is that as the sample size becomes larger,
the most common frequentist techniques and their
Bayesian counterparts converge to the same limit.

This limit is called the maximum likelihood estimate of β,
meaning an estimate that makes the probability of
observing the sample you actually got as large as possible.

We saw a similar situation when we considered the normal
and t distributions for constructing confidence intervals.

If you had a large enough sample, you got essentially the
same answer regardless of which one you used.
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Linear Models
Some prominent researchers consider the biggest
disadvantage of the Bayesian approach to be the choice of
the prior distribution, which is necessarily subjective.
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disadvantage of the Bayesian approach to be the choice of
the prior distribution, which is necessarily subjective.

How much information to incorporate in the prior, and how
to go about it, remains a difficult question and is an active
area of research.
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Linear Models
Some prominent researchers consider the biggest
disadvantage of the Bayesian approach to be the choice of
the prior distribution, which is necessarily subjective.

How much information to incorporate in the prior, and how
to go about it, remains a difficult question and is an active
area of research.

There is some agreement that choosing a prior distribution
that imposes no restrictions on the value of β is acceptable
when there is outside information to be incorporated in the
analysis, and this is the approach we will take.
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Linear Models
We will use R to generate a model of this type.

First generate 1000 values for the Xi: Pick 1000 values
between zero and 100 with the command:

x<-100*runif(1000)
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Linear Models
We will use R to generate a model of this type.

First generate 1000 values for the Xi: Pick 1000 values
between zero and 100 with the command:

x<-100*runif(1000)
Next assign a value to β. We’ll use 2:

beta<-2
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Linear Models
We will use R to generate a model of this type.

First generate 1000 values for the Xi: Pick 1000 values
between zero and 100 with the command:

x<-100*runif(1000)
Next assign a value to β. We’ll use 2:

beta<-2
Now generate 1,000 ei values as normal random variables
with mean zero and standard deviation 5:

e<-rnorm(1000,0,5)
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Linear Models
We will use R to generate a model of this type.

First generate 1000 values for the Xi: Pick 1000 values
between zero and 100 with the command:

x<-100*runif(1000)
Next assign a value to β. We’ll use 2:

beta<-2
Now generate 1,000 ei values as normal random variables
with mean zero and standard deviation 5:

e<-rnorm(1000,0,5)
Finally generate the Yi values as Yi = βXi + ei

y<-beta*x+e
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Data Plot: Beta=2 Sigma=5
plot(x,y)
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Data Plot: Beta=2 Sigma=0
Compare with the deterministic model Y = βX:
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Linear Models
Now we examine the effect of larger values of σe:

Generate 1,000 ei values as normal random variables with
mean zero and standard deviation 10:

e<-rnorm(1000,0,10)
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Linear Models
Now we examine the effect of larger values of σe:

Generate 1,000 ei values as normal random variables with
mean zero and standard deviation 10:

e<-rnorm(1000,0,10)
Now regenerate the Yi values as Yi = βXi + ei:

y<-beta*x+e
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Linear Models
Now we examine the effect of larger values of σe:

Generate 1,000 ei values as normal random variables with
mean zero and standard deviation 10:

e<-rnorm(1000,0,10)
Now regenerate the Yi values as Yi = βXi + ei:

y<-beta*x+e
Now examine the plot of x and y.
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Beta=2 Sigma=10
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Linear Models
Repeat the process with σe = 70.

Generate 1,000 ei values as normal random variables with
mean zero and standard deviation 70:

e<-rnorm(1000,0,70)
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Repeat the process with σe = 70.

Generate 1,000 ei values as normal random variables with
mean zero and standard deviation 70:

e<-rnorm(1000,0,70)
Now regenerate the Yi values as Yi = βXi + ei:

y<-beta*x+e
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Linear Models
Repeat the process with σe = 70.

Generate 1,000 ei values as normal random variables with
mean zero and standard deviation 70:

e<-rnorm(1000,0,70)
Now regenerate the Yi values as Yi = βXi + ei:

y<-beta*x+e
Now examine the plot of x and y.
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Beta=2 Sigma=70
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Linear Models
Next repeat the process with σe = 150.

Generate 1,000 ei values as normal random variables with
mean zero and standard deviation 150:

e<-rnorm(1000,0,150)
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Linear Models
Next repeat the process with σe = 150.

Generate 1,000 ei values as normal random variables with
mean zero and standard deviation 150:

e<-rnorm(1000,0,150)
Now regenerate the Yi values as Yi = βXi + ei:

y<-beta*x+e
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Linear Models
Next repeat the process with σe = 150.

Generate 1,000 ei values as normal random variables with
mean zero and standard deviation 150:

e<-rnorm(1000,0,150)
Now regenerate the Yi values as Yi = βXi + ei:

y<-beta*x+e
Now examine the plot of x and y.

Introduction to Linear Models – p. 19/31



Beta=2 Sigma=150
The trend is less obvious as the "noise" level increases:
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Linear Models
Finally repeat the process with σe = 1000.

Generate 1,000 ei values as normal random variables with
mean zero and standard deviation 1000:

e<-rnorm(1000,0,1000)

Introduction to Linear Models – p. 21/31



Linear Models
Finally repeat the process with σe = 1000.

Generate 1,000 ei values as normal random variables with
mean zero and standard deviation 1000:

e<-rnorm(1000,0,1000)
Now regenerate the Yi values as Yi = βXi + ei:

y<-beta*x+e
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Linear Models
Finally repeat the process with σe = 1000.

Generate 1,000 ei values as normal random variables with
mean zero and standard deviation 1000:

e<-rnorm(1000,0,1000)
Now regenerate the Yi values as Yi = βXi + ei:

y<-beta*x+e
Now examine the plot of x and y.
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Beta=2 Sigma=1000
By now the trend is barely discernable:
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Discrete vs Continous Predictors
We just examined a model of the form

Yi = βXi + ei
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Discrete vs Continous Predictors
We just examined a model of the form

Yi = βXi + ei

Notice that both Yi and Xi are continuous, that is, they can
assume any value.
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Discrete vs Continous Predictors
We just examined a model of the form

Yi = βXi + ei

Notice that both Yi and Xi are continuous, that is, they can
assume any value.

Now we examine a variation that allows us to use a linear
model to compare the means of more than two groups.
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Discrete vs Continous Predictors
We just examined a model of the form

Yi = βXi + ei

Notice that both Yi and Xi are continuous, that is, they can
assume any value.

Now we examine a variation that allows us to use a linear
model to compare the means of more than two groups.

We have developed techniques for comparing the means of
two populations, but what we consider next will apply to
more general types of comparisons.
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Discrete Predictors
Suppose we want to compare the means of three groups,
and we have samples from each group.

Introduction to Linear Models – p. 24/31



Discrete Predictors
Suppose we want to compare the means of three groups,
and we have samples from each group.

This time the linear model looks like this:

Yi = µ + β1X1i + β2X2i + β3X3i + ei

Where:

X1i equals 1 if Yi is in group 1, and zero otherwise

X2i equals 1 if Yi is in group 2, and zero otherwise

X3i equals 1 if Yi is in group 3, and zero otherwise

µ, β1, β2, and β3 are parameters (constants)
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Discrete Predictors
As before, the Xijs and βs are constants, and the eis are
random variables with mean µe = 0 and standard deviation
σe. Then because the Xij values corresponding to the
groups Yi does not belong to are zero, we can write:

Yi = µ + β1X1i + ei if Yi is in group 1

Yi = µ + β2X2i + ei if Yi is in group 2

Yi = µ + β3X3i + ei if Yi is in group 3

Introduction to Linear Models – p. 25/31



Discrete Predictors
As before, the Xijs and βs are constants, and the eis are
random variables with mean µe = 0 and standard deviation
σe. Then because the Xij values corresponding to the
groups Yi does not belong to are zero, we can write:

Yi = µ + β1X1i + ei if Yi is in group 1

Yi = µ + β2X2i + ei if Yi is in group 2

Yi = µ + β3X3i + ei if Yi is in group 3

The expected values for the Yis are:

E(Yi) = µ + β1X1i = µ + β1 if Yi is in group 1

E(Yi) = µ + β2X2i = µ + β2 if Yi is in group 2

E(Yi) = µ + β3X3i = µ + β3 if Yi is in group 3
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Discrete Predictors
For example, suppose there are 9 data values in the
sample, 3 from each group.

Then the Y and X values are:
Y X1i X2i X3i

Y1 1 0 0

Y2 1 0 0

Y3 1 0 0

Y4 0 1 0

Y5 0 1 0

Y6 0 1 0

Y7 0 0 1

Y8 0 0 1

Y9 0 0 1
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Discrete Predictors
Now we will construct artificial data with 3, 000 observations,
1, 000 in each of three groups with the following
characteristics:

µ = 1

β1 = 1

β2 = 3

β3 = 5

σe = 1
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Discrete Predictors
The expected values for the three groups are:

E(Yi) = µ + β1 = 1 + 1 = 2 if Yi is in group 1

E(Yi) = µ + β2 = 1 + 3 = 4 if Yi is in group 2

E(Yi) = µ + β3 = 1 + 5 = 6 if Yi is in group 3
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Generating the Data
As before we will use R to generate the model.

First generate 1000 values for each of three groups, with
values 1, 3, and 5:

x<-c(rep(1,1000),rep(3,1000),rep(5,1000))

Introduction to Linear Models – p. 29/31



Generating the Data
As before we will use R to generate the model.

First generate 1000 values for each of three groups, with
values 1, 3, and 5:

x<-c(rep(1,1000),rep(3,1000),rep(5,1000))
Next assign a value to µ. We’ll use 1:

mu<-1
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Generating the Data
As before we will use R to generate the model.

First generate 1000 values for each of three groups, with
values 1, 3, and 5:

x<-c(rep(1,1000),rep(3,1000),rep(5,1000))
Next assign a value to µ. We’ll use 1:

mu<-1
Now generate 3,000 ei values as normal random variables
with mean zero and standard deviation 1:

e<-rnorm(3000,0,1)
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Generating the Data
As before we will use R to generate the model.

First generate 1000 values for each of three groups, with
values 1, 3, and 5:

x<-c(rep(1,1000),rep(3,1000),rep(5,1000))
Next assign a value to µ. We’ll use 1:

mu<-1
Now generate 3,000 ei values as normal random variables
with mean zero and standard deviation 1:

e<-rnorm(3000,0,1)
Now generate the Yi values:

y<-mu+x+e
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Generating the Data
Now generate the group labels:

group <- gl(3,1000,3000,
labels=c("Group1","Group2","Group3"))
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Generating the Data
Now generate the group labels:

group <- gl(3,1000,3000,
labels=c("Group1","Group2","Group3"))
Finally, produce a box plot of the data:

boxplot(y ∼ group)
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mu=1 beta1=1 beta2=2 beta3=3
The following is a boxplot of the data:
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