So far we have considered the following types of linear models:

Simple regression (continuous X values):

$$Y_i = \beta_0 + \beta_1 X_i + e_i$$

So far we have considered the following types of linear models:

Simple regression (continuous X values):

$$Y_i = \beta_0 + \beta_1 X_i + e_i$$

One-way (single factor) ANOVA (X values are zeros and ones)

$$Y_i = \mu + \alpha_1 X_{i1} + \alpha_2 X_{i2} + \alpha_3 X_{i3} + e_i$$

So far we have considered the following types of linear models:

Simple regression (continuous X values):

$$Y_i = \beta_0 + \beta_1 X_i + e_i$$

One-way (single factor) ANOVA (X values are zeros and ones)

$$Y_i = \mu + \alpha_1 X_{i1} + \alpha_2 X_{i2} + \alpha_3 X_{i3} + e_i$$

Two-way (two factor) ANOVA without interaction (2 factors; X values are zeros and ones)

$$Y_i = \mu + \alpha_1 X_{i1} + \alpha_2 X_{i2} + \beta_1 X_{i3} + \beta_2 X_{i4} + e_i$$

Two factor ANOVA with interaction:

$$Y_i = \mu + \alpha_1 X_{i1} + \alpha_2 X_{i2} + \beta_1 X_{i3} + \beta_2 X_{i4} + \beta_2 X_{i4} + \beta_1 X_{i3} + \beta_2 X_{i4} + \beta_1 X_{i4} + \beta_2 X_{i4} + \beta_1 X_{i4} + \beta_2 X_{i4} + \beta_1 X_{i4} + \beta_1 X_{i4} + \beta_2 X_$$

 $\gamma_{11}Xi1Xi3 + \gamma_{12}X_{i1}X_{i4} + \gamma_{21}X_{i2}X_{i3} + \gamma_{22}X_{i2}X_{i4} + e_i$

Two factor ANOVA with interaction:

$$Y_i = \mu + \alpha_1 X_{i1} + \alpha_2 X_{i2} + \beta_1 X_{i3} + \beta_2 X_{i4} + \beta_2 X_{i4} + \beta_1 X_{i3} + \beta_2 X_{i4} + \beta_1 X_{i4} + \beta_2 X_{i4} + \beta_1 X_{i4} + \beta_2 X_{i4} + \beta_1 X_{i4} + \beta_1 X_{i4} + \beta_2 X_$$

 $\gamma_{11}Xi1Xi3 + \gamma_{12}X_{i1}X_{i4} + \gamma_{21}X_{i2}X_{i3} + \gamma_{22}X_{i2}X_{i4} + e_i$

Models with both continuous and discrete predictors (analysis of covariance)

$$Y_i = \mu + \alpha_1 X_{i1} + \alpha_2 X_{i2} + \beta X_{i3} + e_i$$

Two factor ANOVA with interaction:

$$Y_i = \mu + \alpha_1 X_{i1} + \alpha_2 X_{i2} + \beta_1 X_{i3} + \beta_2 X_{i4} + \beta_1 X_{i4} + \beta_2 X_{i4} + \beta_2 X_{i4} + \beta_1 X_{i3} + \beta_2 X_{i4} + \beta_1 X_{i4} + \beta_1 X_{i4} + \beta_2 X_{i4} + \beta_1 X_{i4} + \beta_2 X_{i4} + \beta_2 X_{i4} + \beta_2 X_{i4} + \beta_1 X_{i4} + \beta_2 X_{i4} + \beta_1 X_{i4} + \beta_2 X_{i4} + \beta_1 X_{i4} + \beta_2 X_$$

 $\gamma_{11}Xi1Xi3 + \gamma_{12}X_{i1}X_{i4} + \gamma_{21}X_{i2}X_{i3} + \gamma_{22}X_{i2}X_{i4} + e_i$

Models with both continuous and discrete predictors (analysis of covariance)

$$Y_i = \mu + \alpha_1 X_{i1} + \alpha_2 X_{i2} + \beta X_{i3} + e_i$$

Now we consider models with multiple continuous predictors (multiple regression)

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i3} + e_i$$

Multiple Regression

We will consider a model with the following 5 continuous predictors:

- vehicle weight etw
- engine displacement cid
- horsepower rhp
- compression ratio cmp
- coast down time cstdwn

Go to the course web page, then the *Notes and Handouts* section.

Go to the course web page, then the *Notes and Handouts* section.

Right click on the code to download the 2009 EPA mileage data link and select copy link location

Go to the course web page, then the *Notes and Handouts* section.

Right click on the code to download the 2009 EPA mileage data link and select copy link location

Paste the link between the quotes in a source("") command

Go to the course web page, then the *Notes and Handouts* section.

Right click on the code to download the 2009 EPA mileage data link and select copy link location

Paste the link between the quotes in a source("") command Verify the download by typing str(epa)

Subsetting the EPA data

Since we only need certain columns of the data, we'll create a subset called mreg.

Enter the following R command to create a new data frame called mreg:

```
mreg<-subset(
```

```
epa,select=c(mpg,etw,cid,rhp,cmp,cstdwn))
```

Subsetting the EPA data

Since we only need certain columns of the data, we'll create a subset called mreg.

Enter the following R command to create a new data frame called mreg:

```
mreg<-subset(
```

```
epa,select=c(mpg,etw,cid,rhp,cmp,cstdwn))
```

Subsetting the EPA data

Since we only need certain columns of the data, we'll create a subset called mreg.

Enter the following R command to create a new data frame called mreg:

```
mreg<-subset(
```

```
epa,select=c(mpg,etw,cid,rhp,cmp,cstdwn))
```

Now to simplify our code, we'll attach the new data frame. Enter:

attach(mreg)

We use lm to run the model:

lm0<-lm(mpg etw+cid+rhp+cmp+cstdwn)</pre>

We use lm to run the model:

lm0<-lm(mpg etw+cid+rhp+cmp+cstdwn) Because
we have several predictors, we use the drop1 function to
test their significance:</pre>

drop1(lm0, \sim .,test="F")

```
The result of the command drop1(lm0, \sim.,test="F") is
```

	Df	Sum of Sq	RSS	F value	Pr(F)
<none></none>		71987			
etw	1	3753.5	75741	90.1531	< 2.2e-16
cid	1	1200.5	73188	28.8338	8.955e-08
rhp	1	297.2	72284	7.1379	0.007618
cmp	1	1339.5	73327	32.1714	1.651e-08
cstdwn	1	22.4	72009	0.5378	0.463460

```
The result of the command drop1(lm0,\sim.,test="F") is
```

	Df	Sum of Sq	RSS	F value	Pr(F)
<none></none>		71987			
etw	1	3753.5	75741	90.1531	< 2.2e-16
cid	1	1200.5	73188	28.8338	8.955e-08
rhp	1	297.2	72284	7.1379	0.007618
cmp	1	1339.5	73327	32.1714	1.651e-08
cstdwn	1	22.4	72009	0.5378	0.463460

The F statistics are significant (P < 0.05) for all except cstdwn.

Interpreting the Coefficients

The results of summary(lm0) are:

Coefficients:

	Estimate
(Intercept)	37.9108831
etw	-0.0030264
cid	-0.0254872
rhp	-0.0078682
cmp	0.9761919
cstdwn	0.0152935

Interpreting the Coefficients

The results of summary(lm0) are:

Coefficients:

	Estimate
(Intercept)	37.9108831
etw	-0.0030264
cid	-0.0254872
rhp	-0.0078682
cmp	0.9761919
cstdwn	0.0152935

Evidently etw, cid, and rhp have a negative effect on mileage, while cmp and cstdwn have a positive effect, although cstdwn is not significantly different from zero.

Interpreting the Coefficients

The linear model for the expected mpg is:

mpg = 37.91 - 0.003etw - 0.025cid - 0.0079rhp +

0.976 cmp + 0.015 cstdwn