
Linear Models Recap
So far we have considered the following types of linear
models:

Simple regression (continuous X values):

Yi = β0 + β1Xi + ei
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One-way (single factor) ANOVA (X values are zeros and
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Linear Models Recap
So far we have considered the following types of linear
models:

Simple regression (continuous X values):

Yi = β0 + β1Xi + ei

One-way (single factor) ANOVA (X values are zeros and
ones)

Yi = µ + α1Xi1 + α2Xi2 + α3Xi3 + ei

Two-way (two factor) ANOVA without interaction (2 factors;
X values are zeros and ones)

Yi = µ + α1Xi1 + α2Xi2 + β1Xi3 + β2Xi4 + ei
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Linear Models Recap
Finally we considered the two factor ANOVA with
interaction:

Yi = µ + α1Xi1 + α2Xi2 + β1Xi3 + β2Xi4+

γ11Xi1Xi3 + γ12Xi1Xi4 + γ21Xi2Xi3 + γ22Xi2Xi4 + ei
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Linear Models Recap
Finally we considered the two factor ANOVA with
interaction:

Yi = µ + α1Xi1 + α2Xi2 + β1Xi3 + β2Xi4+

γ11Xi1Xi3 + γ12Xi1Xi4 + γ21Xi2Xi3 + γ22Xi2Xi4 + ei

Today we will extend our list to include models with both
continuous and discrete predictors.
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Linear Models Recap
Finally we considered the two factor ANOVA with
interaction:

Yi = µ + α1Xi1 + α2Xi2 + β1Xi3 + β2Xi4+

γ11Xi1Xi3 + γ12Xi1Xi4 + γ21Xi2Xi3 + γ22Xi2Xi4 + ei

Today we will extend our list to include models with both
continuous and discrete predictors.

Historically this type of model has been called analysis of
covariance

If the factor has two levels and there is one continuous
predictor Xi3, the model has the form

Yi = µ + α1Xi1 + α2Xi2 + βXi3 + ei
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Analysis of Covariance

Yi = µ + α1Xi1 + α2Xi2 + βXi3 + ei

This type of model is often considered a one factor ANOVA
with adjustment for the continuous variable.
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Analysis of Covariance

Yi = µ + α1Xi1 + α2Xi2 + βXi3 + ei

This type of model is often considered a one factor ANOVA
with adjustment for the continuous variable.

In our example, the factor has two levels, and the expected
values of the Yi in each case are:

Level 1: Yi = µ + α1 + βXi

Level 2: Yi = µ + α2 + βXi
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Analysis of Covariance

Yi = µ + α1Xi1 + α2Xi2 + βXi3 + ei

This type of model is often considered a one factor ANOVA
with adjustment for the continuous variable.

In our example, the factor has two levels, and the expected
values of the Yi in each case are:

Level 1: Yi = µ + α1 + βXi

Level 2: Yi = µ + α2 + βXi

It can also be thought of as fitting parallel regression lines
for each level of the factor.
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Analysis of Covariance
Notice that if there are no differences in the levels of the
factor, (α1 = α2 = 0), the model

Yi = µ + α1Xi1 + α2Xi2 + βXi3 + ei

reduces to the simple regression model

Yi = µ + βXi3 + ei
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Analysis of Covariance
Notice that if there are no differences in the levels of the
factor, (α1 = α2 = 0), the model

Yi = µ + α1Xi1 + α2Xi2 + βXi3 + ei

reduces to the simple regression model

Yi = µ + βXi3 + ei

If the slope of the regression line is zero, (β = 0), the model

Yi = µ + α1Xi1 + α2Xi2 + βXi3 + ei

reduces to the one factor ANOVA,

Yi = µ + α1Xi1 + α2Xi2 + ei
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Analysis of Covariance
We will perform an analysis of covariance using the EPA
data in the following way:

Suppose we do a one-way ANOVA to compare mileage for
cars and trucks.
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Analysis of Covariance
We will perform an analysis of covariance using the EPA
data in the following way:

Suppose we do a one-way ANOVA to compare mileage for
cars and trucks.

However, we want to adjust for the fact that engine
displacement (cid ) has an effect on gas mileage, and
trucks probably have larger engines, on average, than cars.

So we want to adjust for cid when we compare cars and
trucks.
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Reading the EPA data into R
Go to the course web page, then the Notes and Handouts
section.
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Reading the EPA data into R
Go to the course web page, then the Notes and Handouts
section.

Right click on the 2009 EPA mileage data download link
and select copy link location
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Reading the EPA data into R
Go to the course web page, then the Notes and Handouts
section.

Right click on the 2009 EPA mileage data download link
and select copy link location

Paste the URL between the quotes in the R command:

source("")
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Reading the EPA data into R
Go to the course web page, then the Notes and Handouts
section.

Right click on the 2009 EPA mileage data download link
and select copy link location

Paste the URL between the quotes in the R command:

source("")

When you hit enter, this should download the EPA data to
your workspace in a data frame named epa. It also does an
attach command for epa. Verify that you have the data by
entering:

str(epa)
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Subsetting the EPA data
Since we only need three columns of the data, we’ll create
a subset called cov .

Enter the following R command to create a new data frame
called cov :

cov<-subset(epa„select=c(mpg,car.truck,cid))
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Subsetting the EPA data
Since we only need three columns of the data, we’ll create
a subset called cov .

Enter the following R command to create a new data frame
called cov :

cov<-subset(epa„select=c(mpg,car.truck,cid))
It should contain only the columns mpg,car.truck,cid .
We can verify this by entering:

str(cov)
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Subsetting the EPA data
Since we only need three columns of the data, we’ll create
a subset called cov .

Enter the following R command to create a new data frame
called cov :

cov<-subset(epa„select=c(mpg,car.truck,cid))
It should contain only the columns mpg,car.truck,cid .
We can verify this by entering:

str(cov)

Now to simplify our code, we’ll attach the new data frame.
Enter:

attach(cov)
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Fitting the Models
First we’ll summarize the data by computing the sample
means for mpgand cid . Enter:

agd<-aggregate(cov,
by=list(car.truck),FUN=mean)

print(agd)
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Fitting the Models
First we’ll summarize the data by computing the sample
means for mpgand cid . Enter:

agd<-aggregate(cov,
by=list(car.truck),FUN=mean)

print(agd)

The results indicate the sample mean of mpg for each of
the four categories:

Group.1 mpg cid
C 29.14295 195.5629
T 23.49641 251.0603
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Fitting the Models
First we’ll summarize the data by computing the sample
means for mpgand cid . Enter:

agd<-aggregate(cov,
by=list(car.truck),FUN=mean)

print(agd)

The results indicate the sample mean of mpg for each of
the four categories:

Group.1 mpg cid
C 29.14295 195.5629
T 23.49641 251.0603

As expected, mileage is lower for trucks, on average, and
engine displacement is higher.
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Fitting the Models
Now run the linear model for the one-way ANOVA without
the covariate cid :

lm0<-lm(mpg ∼ truck.car)

summary(lm0)
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Fitting the Models
Now run the linear model for the one-way ANOVA without
the covariate cid :

lm0<-lm(mpg ∼ truck.car)

summary(lm0)

The results indicate a significant difference between cars
and trucks, and the model predicts the sample means:

Coefficients:
Estimate

(Intercept) 29.1429
car.truckT -5.6465 (29.1429-5.6465=23.4964)
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Fitting the Models
Now run the linear model for the one-way ANOVA without
the covariate cid :

lm0<-lm(mpg ∼ truck.car)

summary(lm0)

The results indicate a significant difference between cars
and trucks, and the model predicts the sample means:

Coefficients:
Estimate

(Intercept) 29.1429
car.truckT -5.6465 (29.1429-5.6465=23.4964)

The model without adjusting for cid indicates a difference
of 5.65 mpg between cars and trucks.
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Fitting the Models
Now we include cid as a continuous predictor in the model:

lm0<-lm(mpg ∼ truck.car+cid)

Linear Models with R Part 5 – p. 10/13



Fitting the Models
Now we include cid as a continuous predictor in the model:

lm0<-lm(mpg ∼ truck.car+cid) Because we now
have more than one predictor, we use the drop1 function to
test their significance:

drop1(lm0, ∼ .,test="F")
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Fitting the Models
Now we include cid as a continuous predictor in the model:

lm0<-lm(mpg ∼ truck.car+cid) Because we now
have more than one predictor, we use the drop1 function to
test their significance:

drop1(lm0, ∼ .,test="F")

The results indicate both are

Df Sum of Sq RSS F value Pr(F)
<none> 133786

car.truck 1 3425 137211 73.759 < 2.2e-16
cid 1 57076 190862 1229.107 < 2.2e-16
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Fitting the Models
Now we include cid as a continuous predictor in the model:

lm0<-lm(mpg ∼ truck.car+cid) Because we now
have more than one predictor, we use the drop1 function to
test their significance:

drop1(lm0, ∼ .,test="F")

The results indicate both are

Df Sum of Sq RSS F value Pr(F)
<none> 133786

car.truck 1 3425 137211 73.759 < 2.2e-16
cid 1 57076 190862 1229.107 < 2.2e-16

The F statistics are significant for both predictors (P < 0.05).
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Fitting the Models
The results of summary(lm0) are:

Coefficients:
Estimate

(Intercept) 40.814573
car.truckT -2.334328

cid -0.059682
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Fitting the Models
The results of summary(lm0) are:

Coefficients:
Estimate

(Intercept) 40.814573
car.truckT -2.334328

cid -0.059682

This time the estimated difference between cars and trucks
is 2.33 mpg, rather than 5.65 mpg.
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Fitting the Models
The results of summary(lm0) are:

Coefficients:
Estimate

(Intercept) 40.814573
car.truckT -2.334328

cid -0.059682

This time the estimated difference between cars and trucks
is 2.33 mpg, rather than 5.65 mpg.

The interpretation of these coefficients is that the difference
in mileage between cars and trucks that have the same
engine displacement is 2.33 mpg.
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Fitting the Models
The results of summary(lm0) are:

Coefficients:
Estimate

(Intercept) 40.814573
car.truckT -2.334328

cid -0.059682

This time the estimated difference between cars and trucks
is 2.33 mpg, rather than 5.65 mpg.

The interpretation of these coefficients is that the difference
in mileage between cars and trucks that have the same
engine displacement is 2.33 mpg.

Note that the model corresponds to two parallel regression
lines with different intercepts.
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Fitting the Models
The next question that might arise is: are the regression
lines really parallel? Or does cid have a different effect on
mileage for cars and trucks?
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Fitting the Models
The next question that might arise is: are the regression
lines really parallel? Or does cid have a different effect on
mileage for cars and trucks?

To answer this question, we can consider a model where
we have different slopes for cars and trucks.

This is exactly equivalent to an interaction term, and our
new model is:

Yi = µ + α1Xi1 + α2Xi2 + β1Xi3Xi1 + β2Xi4Xi2 + ei
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Fitting the Models
The next question that might arise is: are the regression
lines really parallel? Or does cid have a different effect on
mileage for cars and trucks?

To answer this question, we can consider a model where
we have different slopes for cars and trucks.

This is exactly equivalent to an interaction term, and our
new model is:

Yi = µ + α1Xi1 + α2Xi2 + β1Xi3Xi1 + β2Xi4Xi2 + ei

As before, we replace the + in the model with an ∗ to
include all interactions:

lm0<-lm(mpg ∼ truck.car * cid)
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Fitting the Models
The next question that might arise is: are the regression
lines really parallel? Or does cid have a different effect on
mileage for cars and trucks?

To answer this question, we can consider a model where
we have different slopes for cars and trucks.

This is exactly equivalent to an interaction term, and our
new model is:

Yi = µ + α1Xi1 + α2Xi2 + β1Xi3Xi1 + β2Xi4Xi2 + ei

As before, we replace the + in the model with an ∗ to
include all interactions:

lm0<-lm(mpg ∼ truck.car * cid)
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Fitting the Models
Again we use drop1 to test the significance of factors:

drop1(lm0, ∼ .,test="F")
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Fitting the Models
Again we use drop1 to test the significance of factors:

drop1(lm0, ∼ .,test="F")

Df Sum Sq RSS F value Pr(F)
<none> 133736

car.truck 1 664 134400 14.300 0.0001590
cid 1 34981 168717 753.319 < 2.2e-16

car.truck:cid 1 50 133786 1.071 0.3008058
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Fitting the Models
Again we use drop1 to test the significance of factors:

drop1(lm0, ∼ .,test="F")

Df Sum Sq RSS F value Pr(F)
<none> 133736

car.truck 1 664 134400 14.300 0.0001590
cid 1 34981 168717 753.319 < 2.2e-16

car.truck:cid 1 50 133786 1.071 0.3008058

The result indicates that the car.truck factor and the
continuous predictor cid are significant (P < 0.05), but the
interaction term, representing a difference in the slopes of
the two regression lines, is not significantly different from
zero (P = 0.30).
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