Recap: One-Way Anova

We will generate artificial data fitting the model:

$$
Y_{i}=\mu+\alpha_{1} X_{1 i}+\alpha_{2} X_{2 i}+\alpha_{3} X_{3 i}+e_{i}
$$

With:

- $\mu=2$
- $\alpha_{1}=4$
- $\alpha_{2}=1$
- $\alpha_{3}=2$
- $\sigma_{e}=10$

One-Way ANOVA

Enter the following R statements:
mu<-1; alpha1<-1; alpha2<-4; alpha3<-6 $x 1<-c(r e p(1,1000), r e p(0,1000), r e p(0,1000))$ $x 2<-c(r e p(0,1000), r e p(1,1000), r e p(0,1000))$ $x 3<-c(r e p(0,1000), r e p(0,1000), r e p(1,1000))$ e<-rnorm(3000,0,5)
group<-gl (3,1000,3000, labels=c ("G1", "G2", "G3"))
$y<-m u+a l p h a 1 * x 1+a l p h a 2 * x 2+a l p h a 3 * x 3+e$ art1<-data.frame (y,x1,x2,x3,group)
str (art1)

One-Way ANOVA

We can produce a boxplot of the data with the following statement:
boxplot(y ~ group)

One-Way ANOVA

We can produce a boxplot of the data with the following statement:
boxplot (y ~ group)
Now run the aov procedure and print the summary of its output:
lm0<-aov($y \sim$ group) ; summary (lm0)

One-Way ANOVA

We can produce a boxplot of the data with the following statement:
boxplot (y ~ group)
Now run the aov procedure and print the summary of its output:
$\operatorname{lm} 0<-a o v(y) ~ g r o u p) ~ ; ~ s u m m a r y(l m 0) ~$
On the line beginning with group, the F value and $\operatorname{Pr}(>F)$ indicate whether there are any significant differences between groups.

One-Way ANOVA

We can produce a boxplot of the data with the following statement:
boxplot (y ~ group)
Now run the aov procedure and print the summary of its output:
lm0<-aov(y ~ group) ; summary (lm0)
On the line beginning with group, the F value and $\operatorname{Pr}(>F)$ indicate whether there are any significant differences between groups.

If $\operatorname{Pr}(>F)$ is less than the desired α level of the test (usually 0.05), we reject the mull hypothesis that the group means are all equal.

One-Way ANOVA

The means of the variables $y, x 1, x 2$, and $x 3$ by group can be obtained by the following statements:
aggregate(art1, by=list(group), FUN=mean)

One-Way ANOVA

The means of the variables $y, x 1, x 2$, and $x 3$ by group can be obtained by the following statements:
aggregate(art1, by=list (group), FUN=mean)
From the way we generated the data, these means represent sample estimates of the following parameter values:

- $E(Y)$ for group 1: $\mu+\alpha_{1}=1+1=2$
- $E(Y)$ for group 2: $\mu+\alpha_{2}=1+4=5$
- $E(Y)$ for group 3: $\mu+\alpha_{3}=1+6=7$

One-Way ANOVA

Now run the lm procedure and print the summary of its output:
$\operatorname{lm} 0<-\operatorname{lm}(\mathrm{y} \sim$ group $) ;$ summary (lm0)

One-Way ANOVA

Now run the lm procedure and print the summary of its output:
$\operatorname{lm} 0<-\operatorname{lm}(\mathrm{y} ~ \sim ~ g r o u p) ~ ; ~ s u m m a r y(l m 0) ~$
The numbers in the Estimate column (not produced by the aov function) represents the following in terms of the parameters:

Row	Estimate	Expected Value
(Intercept)	$\mu+\alpha_{1}$	$1+1=2$
groupG2	$\alpha_{2}-\alpha_{1}$	$5-2=3$
groupG3	$\alpha_{3}-\alpha_{1}$	$7-2=5$

Reading the EPA data into \mathbf{R}

Go to the course web page, then the Notes and Handouts section.

Reading the EPA data into \mathbf{R}

Go to the course web page, then the Notes and Handouts section.

Right click on the 2009 EPA Mileage Data link and select copy link location

Reading the EPA data into \mathbf{R}

Go to the course web page, then the Notes and Handouts section.
Right click on the 2009 EPA Mileage Data link and select copy link location

This should copy the URL for the EPA .csv data file, which is:
http://www.sandgquinn.org/stonehill/MA225/notes/09tstcar.csv

Reading the EPA data into R

Go to the course web page, then the Notes and Handouts section.
Right click on the 2009 EPA Mileage Data link and select copy link location
This should copy the URL for the EPA .csv data file, which is:
http://www.sandgquinn.org/stonehill/MA225/notes/09tstcar.csv
Carefully type the following command in R, but don't hit enter:
epa<-read.table("", sep=", ", fill=TRUE, header=TRUE)

One-Way ANOVA: Cylinders

We will use a one-way ANOVA to compare city mileage of cars with 4,6 , and 8 cylinders.

One-Way ANOVA: Cylinders

We will use a one-way ANOVA to compare city mileage of cars with 4,6 , and 8 cylinders.
First we will create a new dataframe called epa 468 containing only city mileage values for vehicles with 4,6 , or 8 cylinders:
epa468<- subset (epa, C.H=="C" \& (vpc==4 $\operatorname{vpc}==6 \mid \operatorname{vpc}==8)$)

One-Way ANOVA: Cylinders

We will use a one-way ANOVA to compare city mileage of cars with 4,6 , and 8 cylinders.
First we will create a new dataframe called epa 468 containing only city mileage values for vehicles with 4,6 , or 8 cylinders:
epa468<- subset (epa, C.H=="C" \& (vpc==4 $\mathrm{vpc}==6 \mid \mathrm{vpc}==8)$)

Next we select only records for cars, and keep only mpg and vpc:
epa468<- subset (epa468,
car.truck=="C",select=c (mpg,vpc))

One-Way ANOVA: Cylinders

Now use the aov procedure to run the ANOVA.
We need to treat the variable vpc as a factor so we use the as.factor() function:
lm0<-aov(epa\$468 ~ as.factor(vpc))
summary (lm0)

One-Way ANOVA: Cylinders

Now use the aov procedure to run the ANOVA.
We need to treat the variable vpc as a factor so we use the as.factor() function:
lm0<-aov(epa\$468 ~ as.factor(vpc))
summary (lm0)
We use Tukey's test to compare the means for 4,6 , and 8 cylinders:
TukeyHSD (lm0)

One-Way ANOVA: Cylinders

Now use the aov procedure to run the ANOVA.
We need to treat the variable vpc as a factor so we use the as.factor() function:
lm0<-aov(epa\$468 ~ as.factor(vpc))
summary (lm0)
We use Tukey's test to compare the means for 4,6 , and 8 cylinders:
TukeyHSD (lm0)
The results indicate that each mean is significantly different from the other two

One-Way ANOVA: Cylinders

We can estimate the actual difference in city mileage for 4 , 6 , and 8 cylinder cars by examining the parameter estimates from the linear model.

To compute this, enter:
lm0<-lm(epa\$468 ~ as.factor(vpc))
summary (lm0)

One-Way ANOVA: Cylinders

We can estimate the actual difference in city mileage for 4 , 6 , and 8 cylinder cars by examining the parameter estimates from the linear model.

To compute this, enter:
lm0<-lm(epa\$468 ~ as.factor (vpc))
summary (lm0)
The numbers in the Estimate column (not produced by the aov function) represents the following in terms of the parameters:

Row
(Intercept)
as.factor(epa468\$vpc)6 as.factor(epa468\$vpc)8
Estimate Interpretation
27.7809 MPG for 4 cyls
-6.3023 MPG 4 cyl - MPG 6 cyl
-10.0394 MPG 4 cyl - MPG 8 cyl

One-Way ANOVA: Cylinders

We conclude that whether a car has 4,6 , or 8 cylinders makes a significant difference in the mileage.
The estimated mpg values by number of cylinders are:
Cylinders MPG Computed as:

4	27.78	-
6	21.48	$27.78-6.30$
8	17.74	$27.78-10.04$

Two-Way ANOVA without Interaction

Next we consider a model with two discrete predictors.

Two-Way ANOVA without Interaction

Next we consider a model with two discrete predictors.
We will then use this model to compare mileage data with two discrete factors, each with two levels:

- Factor 1: car or truck
- Factor 2: city or highway

Two-Way ANOVA without Interaction

We will generate artificial data fitting the model:

$$
Y_{i}=\mu+\alpha_{1} X_{1 i}+\alpha_{2} X_{2 i}+\beta_{1} X_{3 i}+\beta_{2} X_{4 i}+e_{i}
$$

With:

- $\mu=5$
- $\alpha_{1}=1$
- $\alpha_{2}=5$
- $\beta_{1}=2$
- $\beta_{2}=7$
- $\sigma_{e}=5$

Two-Way ANOVA without Interaction

The expected values for this model are given by the following table:

$$
Y_{i}=\mu+\alpha_{1} X_{1 i}+\alpha_{2} X_{2 i}+\beta_{1} X_{3 i}+\beta_{2} X_{4 i}+e_{i}
$$

Factor 1:

Factor 2:	Level 1	Level 2
Level 1	$\mu+\alpha_{1}+\beta_{1}=5+1+2$	$\mu+\alpha_{1}+\beta_{2}=5+1+7$
Level 2	$\mu+\alpha_{2}+\beta_{1}=5+5+2$	$\mu+\alpha_{2}+\beta_{2}=5+5+7$

Two-Way ANOVA without Interaction

Enter the following R statements:
mu<-5; alpha1<-1; alpha2<-5; beta1<-2;
beta2<-7
x1<-c (rep $(1,100), r e p(0,100))$;
x2<-c (rep $(0,100)$, rep (1,100))
x3<-rep (c (rep (1,50), rep $(0,50)), 2)$
x4<-rep (c (rep $(0,50)$, rep $(1,50)), 2)$
e<-rnorm (200,0,5)
class<-gl(2,50,200,labels=c("2010","2011"))
group<-gl(2,100,200,labels=c("Grp1","Grp2"))
y<-mu+alpha1*x1+alpha2*x2+beta1*x3+beta2*x4+e art2<-data.frame (y, class, group)

Two-Way ANOVA without Interaction

Enter the following R statements:
mu<-5; alpha1<-1; alpha2<-5; beta1<-2;
beta2<-7
x1<-c (rep $(1,100), r e p(0,100))$;
x2<-c (rep $(0,100)$, rep (1,100))
x3<-rep (c (rep (1,50), rep (0,50)), 2)
x4<-rep (c (rep $(0,50)$, rep $(1,50)), 2)$
e<-rnorm (200,0,5)
class<-gl(2,50,200,labels=c("2010","2011"))
group<-gl(2,100,200,labels=c("Grp1","Grp2"))
y<-mu+alpha1*x1+alpha2*x2+beta1*x3+beta2*x4+e art2<-data.frame (y, class, group)
We can get a boxplot of the data with: boxplot(y ~ group*class)

Two-Way ANOVA without Interaction

We can display the means for the four cells as:
aggregate (art2, by=list(group,class), FUN=mean)

Two-Way ANOVA without Interaction

We can display the means for the four cells as:
aggregate (art2, by=list(group, class), FUN=mean)

Now run the ANOVA using aov:
lm0<-aov(y ~group+class)
summary (lm0)

Two-Way ANOVA without Interaction

This time the ANOVA table has more rows because we have two factors in the model instead of one (hence the name "two-way analysis of variance"

Two-Way ANOVA without Interaction

This time the ANOVA table has more rows because we have two factors in the model instead of one (hence the name "two-way analysis of variance"

Row	df	Mean Sq	F Value	$\operatorname{Pr}(>\mathrm{F})$
group	1	510.88	20.908	$8.5 \mathrm{e}-06$
class	1	966.04	39.535	$2.0 \mathrm{e}-09$
Residuals	197	24.44		

Two-Way ANOVA

Now we will run a 2 factor model (2-way ANOVA) without interaction on the EPA data using the following two factors:

- Factor 1: Car or Truck (2 levels)
- Factor 2: City or Highway (2 levels)

Two-Way ANOVA

Now we will run a 2 factor model (2-way ANOVA) without interaction on the EPA data using the following two factors:

- Factor 1: Car or Truck (2 levels)
- Factor 2: City or Highway (2 levels)

We can simplify the R code by using the attach (epa) statement, or we can just precede each variable name with epa\$.
If we choose not to attach epa, the code would be:
lm0<-aov (epa\$mpg ~ epa\$C.H+epa\$car.truck summary (lm0)

