
Reading the EPA data into R
Go to the course web page, then the Notes and Handouts
section.
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copy link location
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Reading the EPA data into R
Go to the course web page, then the Notes and Handouts
section.

Right click on the 2009 EPA Mileage Data link and select
copy link location

This should copy the URL for the EPA .csv data file, which
is:

http://www.sandgquinn.org/stonehill/MA225/notes/09tstcar.csv
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Reading the EPA data into R
Go to the course web page, then the Notes and Handouts
section.

Right click on the 2009 EPA Mileage Data link and select
copy link location

This should copy the URL for the EPA .csv data file, which
is:

http://www.sandgquinn.org/stonehill/MA225/notes/09tstcar.csv

Carefully type the following command in R, but don’t hit
enter:

epa<-read.table("",sep=",",fill=TRUE,header=TRUE)

Linear Models with R - Discrete Predictors – p. 1/23



Simple Regression with EPA data
Our simple regression used the engine displacement (cid)
"cubic inches displacement" as the independent variable,
and gas mileage (mpg) "miles per gallon" as the dependent
variable.
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Simple Regression with EPA data
Our simple regression used the engine displacement (cid)
"cubic inches displacement" as the independent variable,
and gas mileage (mpg) "miles per gallon" as the dependent
variable.

You can simplify things a bit if you "attach" the data,
meaning make the column names recognizable.

attach(epa)
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Simple Regression with EPA data
Our simple regression used the engine displacement (cid)
"cubic inches displacement" as the independent variable,
and gas mileage (mpg) "miles per gallon" as the dependent
variable.

You can simplify things a bit if you "attach" the data,
meaning make the column names recognizable.

attach(epa)

Now run the simple regression model, and display the
results:

lm0<-lm(mpg ∼ cid)
summary(lm0)
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Simple Regression with EPA data
From the "Coefficients:" section, in the column labeled
"Estimate", we see:

(Intercept) 40.876 This is the estimate of β0, the intercept
cid -0.064764 This is the estimate of β1, the slope
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Simple Regression with EPA data
From the "Coefficients:" section, in the column labeled
"Estimate", we see:

(Intercept) 40.876 This is the estimate of β0, the intercept
cid -0.064764 This is the estimate of β1, the slope

So our regression model produces a line with a slope of
−0.06 and an intercept of 40.87.
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Simple Regression with EPA data
From the "Coefficients:" section, in the column labeled
"Estimate", we see:

(Intercept) 40.876 This is the estimate of β0, the intercept
cid -0.064764 This is the estimate of β1, the slope

So our regression model produces a line with a slope of
−0.06 and an intercept of 40.87.

The interpretation of this model is as follows:

A car with 0 cubic inches displacement should get 40.87
mpg.
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Simple Regression with EPA data
From the "Coefficients:" section, in the column labeled
"Estimate", we see:

(Intercept) 40.876 This is the estimate of β0, the intercept
cid -0.064764 This is the estimate of β1, the slope

So our regression model produces a line with a slope of
−0.06 and an intercept of 40.87.

The interpretation of this model is as follows:

A car with 0 cubic inches displacement should get 40.87
mpg.

This is not a realistic value for cid, but it does give us a kind
of theoretical upper bound on mileage as you make the
engine smaller.
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Simple Regression with EPA data
The slope is −0.06, which says that according to the model,
for every cubic inch we add to the engine, we lose 0.06mpg

in fuel economy. We can also get predicted mpg values for
various engine dispacements:

cid predicted mpg = 40.876-0.06*cid=mpg
80 35.69488

120 33.10432
160 30.51376
200 27.9232
240 25.33264
280 22.74208
320 20.15152
360 17.56096
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Simple Regression with EPA data
Another line in the summary says:

Multiple R-squared: 0.3578

The Multiple R-squared tells us the proportion of the
variability in Y that the model explains. Our model explains
about 35% more of the variation in Y than a model with just
the mean would.
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Simple Regression with EPA data
Another line in the summary says:

Multiple R-squared: 0.3578

The Multiple R-squared tells us the proportion of the
variability in Y that the model explains. Our model explains
about 35% more of the variation in Y than a model with just
the mean would.

Another line in the summary says:

Residual standard error: 6.9

The Residual standard error is an estimate of σe for the
model

Yi = β0 + β1Xi + ei with ei ∼ N(0, σe)

Linear Models with R - Discrete Predictors – p. 5/23



Simple Regression with EPA data
A number of useful diagnostic plots can be obtained by
entering:

plot(lm0)
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Simple Regression with EPA data
A number of useful diagnostic plots can be obtained by
entering:

plot(lm0)

Because the slope and intercept of the regression line are
quite sensitive to outliers in the data, it is a good idea to
inspect a plot of differences between the predicted and
actual values, which are called the residuals:

ri = Yi − β̂0 + β̂1 ∗ Xi
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Simple Regression with EPA data
A number of useful diagnostic plots can be obtained by
entering:

plot(lm0)

Because the slope and intercept of the regression line are
quite sensitive to outliers in the data, it is a good idea to
inspect a plot of differences between the predicted and
actual values, which are called the residuals:

ri = Yi − β̂0 + β̂1 ∗ Xi

β̂0 and β̂1 represent the estimates of the parameters β0 and
β1 that we obtained by fitting the model. In our case,

β̂0 = 40.876 β̂1 = −0.064764
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Continuous vs Discrete
So far we considered models of the form

Yi = β0 + β1Xi + ei

where the independent or predictor variable Xi was
continuous
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Continuous vs Discrete
So far we considered models of the form

Yi = β0 + β1Xi + ei

where the independent or predictor variable Xi was
continuous

A model with a single continuous predictor is usually called
a simple regression model.
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Continuous vs Discrete
So far we considered models of the form

Yi = β0 + β1Xi + ei

where the independent or predictor variable Xi was
continuous

A model with a single continuous predictor is usually called
a simple regression model.

A different type of model arises when we want to compare
several groups.
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Continuous vs Discrete
So far we considered models of the form

Yi = β0 + β1Xi + ei

where the independent or predictor variable Xi was
continuous

A model with a single continuous predictor is usually called
a simple regression model.

A different type of model arises when we want to compare
several groups.

In this case, there is one predictor variable for each group.
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Continuous vs Discrete
So far we considered models of the form

Yi = β0 + β1Xi + ei

where the independent or predictor variable Xi was
continuous

A model with a single continuous predictor is usually called
a simple regression model.

A different type of model arises when we want to compare
several groups.

In this case, there is one predictor variable for each group.

The predictor variable is always one if the individual
belongs to its group, zero if it does not.
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Continuous vs Discrete
If we have three groups, our linear model has the form:

Yi = µ + α1X1i + α2X2i + α3X3i + ei
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Continuous vs Discrete
If we have three groups, our linear model has the form:

Yi = µ + α1X1i + α2X2i + α3X3i + ei

The independent or X variables are coded as follows:

If the ith subject belongs to group 1, X1i = 1, otherwise
X1i = 0

If the ith subject belongs to group 2, X2i = 1, otherwise
X2i = 0

If the ith subject belongs to group 3, X3i = 1, otherwise
X3i = 0
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Continuous vs Discrete
If we have three groups, our linear model has the form:

Yi = µ + α1X1i + α2X2i + α3X3i + ei

The independent or X variables are coded as follows:

If the ith subject belongs to group 1, X1i = 1, otherwise
X1i = 0

If the ith subject belongs to group 2, X2i = 1, otherwise
X2i = 0

If the ith subject belongs to group 3, X3i = 1, otherwise
X3i = 0

As before, ei is assumed to have a normal distribution
N(0, σe)
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Discrete Predictors (ANOVA)

Yi = µ + α1X1i + α2X2i + α3X3i + ei

As before, the only random quantity on the right hand side
is ei
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Discrete Predictors (ANOVA)

Yi = µ + α1X1i + α2X2i + α3X3i + ei

As before, the only random quantity on the right hand side
is ei

This means the expected values of the Yi variables are:

E(Yi) = µ + α1 If subject i is in group 1

E(Yi) = µ + α2 If subject i is in group 2

E(Yi) = µ + α3 If subject i is in group 3

Linear Models with R - Discrete Predictors – p. 9/23



Discrete Predictors (ANOVA)

Yi = µ + α1X1i + α2X2i + α3X3i + ei

As before, the only random quantity on the right hand side
is ei

This means the expected values of the Yi variables are:

E(Yi) = µ + α1 If subject i is in group 1

E(Yi) = µ + α2 If subject i is in group 2

E(Yi) = µ + α3 If subject i is in group 3

Every subject in a particular group has the same expected
value for Yi
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Discrete Predictors (ANOVA)

Yi = µ + α1X1i + α2X2i + α3X3i + ei

As before, the only random quantity on the right hand side
is ei

This means the expected values of the Yi variables are:

E(Yi) = µ + α1 If subject i is in group 1

E(Yi) = µ + α2 If subject i is in group 2

E(Yi) = µ + α3 If subject i is in group 3

Every subject in a particular group has the same expected
value for Yi

In a sense, this model is predicting the means of each
group
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Discrete Predictors (ANOVA)

Yi = µ + α1X1i + α2X2i + α3X3i + ei

A model of this form, with a separate zero-one predictor for
each group is usually called a one-way analysis of variance
or one-way ANOVA.
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Discrete Predictors (ANOVA)

Yi = µ + α1X1i + α2X2i + α3X3i + ei

A model of this form, with a separate zero-one predictor for
each group is usually called a one-way analysis of variance
or one-way ANOVA.

Now we will generate artificial data that fits this model and
analyze it with R.

The parameter values will be:

µ = 2

α1 = 3

α2 = 6

α3 = 9

σe = 3
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Generating the ANOVA data
With discrete predictors, most statistical software generates
the appropriate X values with zeros and ones in the right
places automatically based on an additional variable that
identifies the group.
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Generating the ANOVA data
With discrete predictors, most statistical software generates
the appropriate X values with zeros and ones in the right
places automatically based on an additional variable that
identifies the group.

First we will generate the variable of group identifiers. We
will make three groups of 500 each.
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Generating the ANOVA data
With discrete predictors, most statistical software generates
the appropriate X values with zeros and ones in the right
places automatically based on an additional variable that
identifies the group.

First we will generate the variable of group identifiers. We
will make three groups of 500 each.

The R code for this is (type it all on one line):

group<-gl(3,500,1500,
labels=c("Group1","Group2","Group3"))
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Generating the ANOVA data
After creating group, entering the R command

table(group)

should list the three group labels each with a count of 500:

> table(group)
group

Group1 Group2 Group3

500 500 500
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Generating the ANOVA data
After creating group, entering the R command

table(group)

should list the three group labels each with a count of 500:

> table(group)
group

Group1 Group2 Group3

500 500 500

Next we generate the 1500 ei values as N(0, 3):

e<-rnorm(1500,0,3)
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Generating the ANOVA data
Next we generate the X1 values as: 1 for group 1, 0
otherwise:

x1<-c(rep(1,500),rep(0,500),rep(0,500))
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Generating the ANOVA data
Next we generate the X1 values as: 1 for group 1, 0
otherwise:

x1<-c(rep(1,500),rep(0,500),rep(0,500))

Now generate the X2 values as: 1 for group 2, 0 otherwise:

x2<-c(rep(0,500),rep(1,500),rep(0,500))
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Generating the ANOVA data
Next we generate the X1 values as: 1 for group 1, 0
otherwise:

x1<-c(rep(1,500),rep(0,500),rep(0,500))

Now generate the X2 values as: 1 for group 2, 0 otherwise:

x2<-c(rep(0,500),rep(1,500),rep(0,500))

Finally generate the X3 values as: 1 for group 3, 0
otherwise:

x3<-c(rep(0,500),rep(0,500),rep(1,500))
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Generating the ANOVA data
Now generate the parameter values:

mu<-2 Set µ = 2

alpha1<-3 Set α1 = 3

alpha2<-6 Set α2 = 6

alpha3<-9 Set α3 = 9
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Generating the ANOVA data
Now generate the parameter values:

mu<-2 Set µ = 2

alpha1<-3 Set α1 = 3

alpha2<-6 Set α2 = 6

alpha3<-9 Set α3 = 9

Finally compute the Y values:

y<-mu+alpha1*x1+alpha2*x2+alpha3*x3+e
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Generating the ANOVA data
At this point Y contains 1500 values, with the properties:

The first 500 (Group 1) have E(Yi) = µ + α1 = 2 + 3 = 5

The second 500 (Group 2) have
E(Yi) = µ + α2 = 2 + 6 = 8

The third 500 (Group 3) have E(Yi) = µ+α3 = 2+9 = 11
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Generating the ANOVA data
At this point Y contains 1500 values, with the properties:

The first 500 (Group 1) have E(Yi) = µ + α1 = 2 + 3 = 5

The second 500 (Group 2) have
E(Yi) = µ + α2 = 2 + 6 = 8

The third 500 (Group 3) have E(Yi) = µ+α3 = 2+9 = 11

Finally compute the Y values:

y<-mu+alpha1*x1+alpha2*x2+alpha3*x3+e
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Generating the ANOVA data
At this point Y contains 1500 values, with the properties:

The first 500 (Group 1) have E(Yi) = µ + α1 = 2 + 3 = 5

The second 500 (Group 2) have
E(Yi) = µ + α2 = 2 + 6 = 8

The third 500 (Group 3) have E(Yi) = µ+α3 = 2+9 = 11
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Generating the ANOVA data
At this point Y contains 1500 values, with the properties:

The first 500 (Group 1) have E(Yi) = µ + α1 = 2 + 3 = 5

The second 500 (Group 2) have
E(Yi) = µ + α2 = 2 + 6 = 8

The third 500 (Group 3) have E(Yi) = µ+α3 = 2+9 = 11

Of course the values won’t match exactly because we
introduced some randomness with the ei values, but they
should be close. To check Group 1, enter:

mean(y[1:500])
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Generating the ANOVA data
For Group 1: mean(y[1:500])

should produce something like [1] 5.021602
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Generating the ANOVA data
For Group 1: mean(y[1:500])

should produce something like [1] 5.021602

For Group 2: mean(y[501:1000])

should produce something like [1] 7.89436
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Generating the ANOVA data
For Group 1: mean(y[1:500])

should produce something like [1] 5.021602

For Group 2: mean(y[501:1000])

should produce something like [1] 7.89436

For Group 3: mean(y[1001:1500])

should produce something like [1] 11.07294
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Generating the ANOVA data
Within each group, the standard deviation should be σe = 3
in this case:

For Group 1: sd(y[1:500])

should produce something like [1] 3.013675
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Generating the ANOVA data
Within each group, the standard deviation should be σe = 3
in this case:

For Group 1: sd(y[1:500])

should produce something like [1] 3.013675

For Group 2: sd(y[501:1000])

should produce something like [1] 3.020052
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Generating the ANOVA data
Within each group, the standard deviation should be σe = 3
in this case:

For Group 1: sd(y[1:500])

should produce something like [1] 3.013675

For Group 2: sd(y[501:1000])

should produce something like [1] 3.020052

For Group 3: sd(y[1001:1500])

should produce something like [1] 2.934667
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Generating the ANOVA data
Within each group, the standard deviation should be σe = 3
in this case:

For Group 1: sd(y[1:500])

should produce something like [1] 3.013675

For Group 2: sd(y[501:1000])

should produce something like [1] 3.020052

For Group 3: sd(y[1001:1500])

should produce something like [1] 2.934667

When we fit the model, the Residual standard error, which
is an estimate of σe based on the sample, should be close
to 3.
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Generating the ANOVA data

We can compute the sample variance σ2
e within each group

as well:

For Group 1: var(y[1:500])

should produce something like [1] 9.082236
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Generating the ANOVA data

We can compute the sample variance σ2
e within each group

as well:

For Group 1: var(y[1:500])

should produce something like [1] 9.082236

For Group 2: var(y[501:1000])

should produce something like [1] 9.120715
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Generating the ANOVA data

We can compute the sample variance σ2
e within each group

as well:

For Group 1: var(y[1:500])

should produce something like [1] 9.082236

For Group 2: var(y[501:1000])

should produce something like [1] 9.120715

For Group 3: var(y[1001:1500])

should produce something like [1] 8.612269
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Generating the ANOVA data

We can compute the sample variance σ2
e within each group

as well:

For Group 1: var(y[1:500])

should produce something like [1] 9.082236

For Group 2: var(y[501:1000])

should produce something like [1] 9.120715

For Group 3: var(y[1001:1500])

should produce something like [1] 8.612269

Note that if we compute the sample variance of y without
taking groups into account, we get something larger:

var(y)

should produce something like 15.03887
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Generating the ANOVA data
This is an important observation for the following reason:

If there are no differences between groups, we should be
able to lump the three groups together into a single sample.
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Generating the ANOVA data
This is an important observation for the following reason:

If there are no differences between groups, we should be
able to lump the three groups together into a single sample.

This should produce a sample variance of σ2
e for y

(assuming no differences between the groups).
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Generating the ANOVA data
This is an important observation for the following reason:

If there are no differences between groups, we should be
able to lump the three groups together into a single sample.

This should produce a sample variance of σ2
e for y

(assuming no differences between the groups).

On the other hand, if there are differences, var(y) will be
inflated because of the differences between the group
means.
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Generating the ANOVA data
This is an important observation for the following reason:

If there are no differences between groups, we should be
able to lump the three groups together into a single sample.

This should produce a sample variance of σ2
e for y

(assuming no differences between the groups).

On the other hand, if there are differences, var(y) will be
inflated because of the differences between the group
means.

The relative size of var(y) and the Residual standard error
form the basis of the test for equality of the three means.
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Generating the ANOVA data
This is an important observation for the following reason:

If there are no differences between groups, we should be
able to lump the three groups together into a single sample.

This should produce a sample variance of σ2
e for y

(assuming no differences between the groups).

On the other hand, if there are differences, var(y) will be
inflated because of the differences between the group
means.

The relative size of var(y) and the Residual standard error
form the basis of the test for equality of the three means.

This is the reason this type of linear model has traditionally
been called "analysis of variance"
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Generating the ANOVA data
Now we perform the computations for the ANOVA.

We have a choice of several routines in R to accomplish
this.

enter:

lm0<-aov(y ∼ group)

summary(lm0)
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Generating the ANOVA data
Now we perform the computations for the ANOVA.

We have a choice of several routines in R to accomplish
this.

enter:

lm0<-aov(y ∼ group)

summary(lm0)

The output should contain a line something like

Residuals 1497 13380.8 8.9
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Generating the ANOVA data
Now we perform the computations for the ANOVA.

We have a choice of several routines in R to accomplish
this.

enter:

lm0<-aov(y ∼ group)

summary(lm0)

The output should contain a line something like

Residuals 1497 13380.8 8.9

The rightmost number is an estimate of σ2
e .

Since we generated data with σe = 3, σ2
e should be close to

9, and it is.
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Generating the ANOVA data
Now we perform the computations for the ANOVA.

We have a choice of several routines in R to accomplish
this.

enter:

lm0<-aov(y ∼ group)

summary(lm0)

The output should contain a line something like

Residuals 1497 13380.8 8.9

The rightmost number is an estimate of σ2
e .

Since we generated data with σe = 3, σ2
e should be close to

9, and it is.
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Generating the ANOVA data
Another line in the output looks something like this:

group 2 9162.5 4581.2 512.53 < 2.2e-16 ***
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Generating the ANOVA data
Another line in the output looks something like this:

group 2 9162.5 4581.2 512.53 < 2.2e-16 ***

The three discrete variables X1, X2, and X3 comprise what
is known as a factor in this type of linear model.
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Generating the ANOVA data
Another line in the output looks something like this:

group 2 9162.5 4581.2 512.53 < 2.2e-16 ***

The three discrete variables X1, X2, and X3 comprise what
is known as a factor in this type of linear model.

The results table for an ANOVA type model usually has a
line for each factor (group in this case)
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Generating the ANOVA data
Another line in the output looks something like this:

group 2 9162.5 4581.2 512.53 < 2.2e-16 ***

The three discrete variables X1, X2, and X3 comprise what
is known as a factor in this type of linear model.

The results table for an ANOVA type model usually has a
line for each factor (group in this case)

The F value column lists the test statistic for the null
hypthesis that all group means are zero, that is,

β1 = β2 = β3 = 0
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Generating the ANOVA data
Another line in the output looks something like this:

group 2 9162.5 4581.2 512.53 < 2.2e-16 ***

The three discrete variables X1, X2, and X3 comprise what
is known as a factor in this type of linear model.

The results table for an ANOVA type model usually has a
line for each factor (group in this case)

The F value column lists the test statistic for the null
hypthesis that all group means are zero, that is,

β1 = β2 = β3 = 0

The F value in this case indicates that it is highly unlikely
that this data is a sample from a population with no group
differences.

Linear Models with R - Discrete Predictors – p. 22/23



Generating the ANOVA data
The results indicate group differences, but the next question
is usually "which groups are different?".
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Generating the ANOVA data
The results indicate group differences, but the next question
is usually "which groups are different?".

One way to answer this question is with a follow-up test
such as Tukey’s test.
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Generating the ANOVA data
The results indicate group differences, but the next question
is usually "which groups are different?".

One way to answer this question is with a follow-up test
such as Tukey’s test.

Enter:

TukeyHSD(lm0)
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Generating the ANOVA data
The results indicate group differences, but the next question
is usually "which groups are different?".

One way to answer this question is with a follow-up test
such as Tukey’s test.

Enter:

TukeyHSD(lm0)
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Generating the ANOVA data
The results indicate group differences, but the next question
is usually "which groups are different?".

One way to answer this question is with a follow-up test
such as Tukey’s test.

Enter:

TukeyHSD(lm0)

This will produce a list of upper and lower confidence
bounds for the difference between each possible pair of
group means. Intervals that do not include zero are
significant.
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