Variance: The Bivariate Case

If X is a bivariate random variable,

$$
X=\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]
$$

then we need three parameters to fully specify the variance-covariance matrix of X :

- The variance of X_{1}
- The variance of X_{2}
- The covariance of X_{1} and X_{2}

Variance: The Bivariate Case

The usual notation for these quantities is:

- The variance of X_{1} is denoted by σ_{1}^{2}
- The variance of X_{2} is denoted by σ_{2}^{2}
- The covariance of X_{1} and X_{2} is denoted by σ_{12}

Variance: The Bivariate Case

The usual notation for these quantities is:

- The variance of X_{1} is denoted by σ_{1}^{2}
- The variance of X_{2} is denoted by σ_{2}^{2}
- The covariance of X_{1} and X_{2} is denoted by σ_{12}

Usually these parameters are arranged in matrix form as

$$
V=\left[\begin{array}{cc}
\sigma_{1}^{2} & \sigma_{12} \\
\sigma_{12} & \sigma_{2}^{2}
\end{array}\right]
$$

Variance: The Bivariate Case

The usual notation for these quantities is:

- The variance of X_{1} is denoted by σ_{1}^{2}
- The variance of X_{2} is denoted by σ_{2}^{2}
- The covariance of X_{1} and X_{2} is denoted by σ_{12}

Usually these parameters are arranged in matrix form as

$$
V=\left[\begin{array}{cc}
\sigma_{1}^{2} & \sigma_{12} \\
\sigma_{12} & \sigma_{2}^{2}
\end{array}\right]
$$

The matrix V is called the variance-covariance matrix of X

Variance: The Bivariate Case

Like the expected value of a linear combination, there is a general formula for the variance of a linear combination $Y=\beta_{1} X_{1}+\beta_{2} X_{2}$.

Variance: The Bivariate Case

Like the expected value of a linear combination, there is a general formula for the variance of a linear combination $Y=\beta_{1} X_{1}+\beta_{2} X_{2}$.
To compute the expected value of Y, we needed to know β, the vector of coefficients, and μ, the vector of expected values.

Variance: The Bivariate Case

Like the expected value of a linear combination, there is a general formula for the variance of a linear combination $Y=\beta_{1} X_{1}+\beta_{2} X_{2}$.
To compute the expected value of Y, we needed to know β, the vector of coefficients, and μ, the vector of expected values.
To compute the variance of Y, we need to know V, the variance-covariance matrix of X, and β. The variance of Y is given by the matrix product

$$
\begin{gathered}
V(Y)=\beta^{\prime} V \beta \\
=\left[\begin{array}{ll}
\beta_{1} & \beta_{2}
\end{array}\right]\left[\begin{array}{cc}
\sigma_{1}^{2} & \sigma_{12} \\
\sigma_{12} & \sigma_{2}^{2}
\end{array}\right]\left[\begin{array}{l}
\beta_{1} \\
\beta_{2}
\end{array}\right]
\end{gathered}
$$

Variance: The Bivariate Case

In matrix notation, if X is a bivariate random variable with variance-covariance matrix V, and β a vector of coefficients,

$$
\text { If } \quad Y=\beta^{\prime} X \quad \text { and } \quad \operatorname{Var}(X)=V
$$

then

$$
V(Y)=\beta^{\prime} V \beta
$$

Variance: The Bivariate Case

In matrix notation, if X is a bivariate random variable with variance-covariance matrix V, and β a vector of coefficients,

$$
\text { If } \quad Y=\beta^{\prime} X \quad \text { and } \quad \operatorname{Var}(X)=V
$$

then

$$
V(Y)=\beta^{\prime} V \beta
$$

The triple product $\beta^{\prime} V \beta$ is called a quadratic form.

Variance: The Bivariate Case

In matrix notation, if X is a bivariate random variable with variance-covariance matrix V, and β a vector of coefficients,

$$
\text { If } \quad Y=\beta^{\prime} X \quad \text { and } \quad \operatorname{Var}(X)=V
$$

then

$$
V(Y)=\beta^{\prime} V \beta
$$

The triple product $\beta^{\prime} V \beta$ is called a quadratic form.
Many common statistical formulas can be written very compactly using quadratic forms. For example, the non-matrix version of the formula above is:

$$
V(Y)=\sum_{i=1}^{2} \beta_{i}^{2} \sigma_{i}^{2}+2 \sum_{i=1}^{2} \sum_{j>i} \beta_{i} \beta_{j} \sigma_{i j}
$$

Variance: The Bivariate Case

Example: Suppose X is a bivariate random variable with variance-covariance matrix

$$
V=\left[\begin{array}{ll}
2 & 1 \\
1 & 4
\end{array}\right]
$$

Variance: The Bivariate Case

Example: Suppose X is a bivariate random variable with variance-covariance matrix

$$
V=\left[\begin{array}{ll}
2 & 1 \\
1 & 4
\end{array}\right]
$$

If $Y=X_{1}+X_{2}$, then $\beta^{\prime}=\left[\begin{array}{ll}1 & 1\end{array}\right]$ and

$$
V(Y)=\beta^{\prime} V \beta=\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 1 \\
1 & 4
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Variance: The Bivariate Case

Example: Suppose X is a bivariate random variable with variance-covariance matrix

$$
V=\left[\begin{array}{ll}
2 & 1 \\
1 & 4
\end{array}\right]
$$

If $Y=X_{1}+X_{2}$, then $\beta^{\prime}=\left[\begin{array}{ll}1 & 1\end{array}\right]$ and

$$
\begin{gathered}
V(Y)=\beta^{\prime} V \beta=\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 1 \\
1 & 4
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
=\left[\begin{array}{ll}
3 & 5
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=8
\end{gathered}
$$

Variance: The Bivariate Case

Example: Suppose X is a bivariate random variable with variance-covariance matrix

$$
V=\left[\begin{array}{ll}
2 & 0 \\
0 & 4
\end{array}\right]
$$

Variance: The Bivariate Case

Example: Suppose X is a bivariate random variable with variance-covariance matrix

$$
V=\left[\begin{array}{ll}
2 & 0 \\
0 & 4
\end{array}\right]
$$

If $Y=X_{1}+X_{2}$, then $\beta^{\prime}=\left[\begin{array}{ll}1 & 1\end{array}\right]$ and

$$
V(Y)=\beta^{\prime} V \beta=\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
0 & 4
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Variance: The Bivariate Case

Example: Suppose X is a bivariate random variable with variance-covariance matrix

$$
V=\left[\begin{array}{ll}
2 & 0 \\
0 & 4
\end{array}\right]
$$

If $Y=X_{1}+X_{2}$, then $\beta^{\prime}=\left[\begin{array}{ll}1 & 1\end{array}\right]$ and

$$
\begin{gathered}
V(Y)=\beta^{\prime} V \beta=\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
0 & 4
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
=\left[\begin{array}{ll}
2 & 4
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=6
\end{gathered}
$$

Variance: The Bivariate Case

The preceding example illustrates a common special case:
When all covariances are zero, the variance of a sum of random variables is the sum of their individual variances.

Variance: The Bivariate Case

The preceding example illustrates a common special case:
When all covariances are zero, the variance of a sum of random variables is the sum of their individual variances.

Another important special case occurs when all covariances are zero, and the variances all have the same value σ^{2} :

$$
V=\left[\begin{array}{cc}
\sigma^{2} & 0 \\
0 & \sigma^{2}
\end{array}\right]
$$

Variance: The Bivariate Case

The preceding example illustrates a common special case:
When all covariances are zero, the variance of a sum of random variables is the sum of their individual variances.

Another important special case occurs when all covariances are zero, and the variances all have the same value σ^{2} :

$$
V=\left[\begin{array}{cc}
\sigma^{2} & 0 \\
0 & \sigma^{2}
\end{array}\right]
$$

If Y is the mean of X_{1} and X_{2}, then $\beta^{\prime}=\left[\frac{1}{2} \frac{1}{2}\right]$ and

$$
V(Y)=\beta^{\prime} V \beta=\left[\begin{array}{ll}
\frac{1}{2} & \frac{1}{2}
\end{array}\right]\left[\begin{array}{cc}
\sigma^{2} & 0 \\
0 & \sigma^{2}
\end{array}\right]\left[\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right]=\frac{\sigma^{2}}{2}
$$

Variance: The Bivariate Case

The preceding example illustrates an important special case:

When all covariances are zero and all variances are σ^{2}, the variance of the mean is:

$$
V(\bar{X})=\frac{\sigma^{2}}{2}
$$

Variance: The Bivariate Case

The preceding example illustrates an important special case:

When all covariances are zero and all variances are σ^{2}, the variance of the mean is:

$$
V(\bar{X})=\frac{\sigma^{2}}{2}
$$

This is important because a sample of size n is usually treated as a vector of n random variables with zero covariances and common variance σ^{2}.

Variance: The Bivariate Case

In this case, β^{\prime} has n components, and is given by

$$
\beta^{\prime} V \beta=\left[\frac{1}{n} \frac{1}{n} \cdots \frac{1}{n}\right]
$$

Variance: The Bivariate Case

In this case, β^{\prime} has n components, and is given by

$$
\beta^{\prime} V \beta=\left[\frac{1}{n} \frac{1}{n} \cdots \frac{1}{n}\right]
$$

so that

$$
\beta^{\prime} V \beta=\left[\frac{1}{n} \frac{1}{n} \cdots \cdots \frac{1}{n}\right]\left[\begin{array}{llll}
\sigma^{2} & & & \\
& \sigma^{2} & & \\
& & \ddots & \\
& & & \sigma^{2}
\end{array}\right]\left[\begin{array}{c}
\frac{1}{n} \\
\frac{1}{n} \\
\vdots \\
\frac{1}{n}
\end{array}\right]=\frac{\sigma^{2}}{n}
$$

Variance: The Bivariate Case

In this case, β^{\prime} has n components, and is given by

$$
\beta^{\prime} V \beta=\left[\frac{1}{n} \frac{1}{n} \cdots \frac{1}{n}\right]
$$

so that

$$
\beta^{\prime} V \beta=\left[\frac{1}{n} \frac{1}{n} \cdots \cdots \frac{1}{n}\right]\left[\begin{array}{llll}
\sigma^{2} & & & \\
& \sigma^{2} & & \\
& & \ddots & \\
& & & \sigma^{2}
\end{array}\right]\left[\begin{array}{c}
\frac{1}{n} \\
\frac{1}{n} \\
\vdots \\
\frac{1}{n}
\end{array}\right]=\frac{\sigma^{2}}{n}
$$

Variance: The Bivariate Case

This can be stated as "the variance of the mean is the variance of the individual observations divided by the sample size".

Variance: The Bivariate Case

This can be stated as "the variance of the mean is the variance of the individual observations divided by the sample size".
Of course this is only true when all of the covariances are zero, and all of the variances are σ^{2}.

Variance: The Bivariate Case

This can be stated as "the variance of the mean is the variance of the individual observations divided by the sample size".
Of course this is only true when all of the covariances are zero, and all of the variances are σ^{2}.
However, keep in mind that all of these special cases are covered by the general formula

$$
\operatorname{Var}\left(\beta^{\prime} X\right)=\beta^{\prime} V \beta
$$

regardless of what β and the variance-covariance matrix V are.

