TheBivariate Case

By a linear combination of two random variables X; and
X9, We mean a new random variable of the form:

Y = 61X1+ 52X>
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Different values of 5; and 3y produce different linear
combinations, including:

® The sum X7+ Xo: b1 =0y =1
#® The difference X; — Xo: (1 =1, By = —1
® Themean (X; + X9)/2: pB1=0=1/2
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The Bivariate Case

By a linear combination of two random variables X; and
X9, We mean a new random variable of the form:

Y = 61X1+ 52X>

Different values of 5; and 3y produce different linear
combinations, including:

® The sum X7+ Xo: b1 =0y =1
#® The difference X; — Xo: (1 =1, By = —1
® Themean (X; + X9)/2: pB1=0=1/2

Less common linear combinations include 3X; — X5,
X1 — 2X9, X9 —2X1, and so on.
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The Bivariate Case

There Is a simple relationship between the expected value
E(Y) of a linear combination of two random variables. Let

X =

B(X)

1
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The Bivariate Case

There Is a simple relationship between the expected value
E(Y) of a linear combination of two random variables. Let
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Values of 3 for a few linear combinations of X; and X, are:
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The Bivariate Case

There Is a simple relationship between the expected value
E(Y) of a linear combination of two random variables. Let

M1
X2 ( ) E(XQ) 195

Values of 3 for a few linear combinations of X; and X, are:

51 1
Y:X1—|—X2 5: —
_/82_ _1_
51 1

1 2 5 5, 4
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TheBivariate Case

Y = X1 +2Xo
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Y = X1 +2Xo
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TheBivariate Case

Y = X1 +2Xo

1
Y = §(X1 + Xo)

Y =3X4
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The Bivariate Case

Example: Two dice are rolled. The random variable X
represents the number showing on the first die, while X5 is
the number showing on the second. In a previous lecture,
we established that when two dice are rolled,

X = then E(X)=pu=| "
X9 3.5
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The Bivariate Case

Example: Two dice are rolled. The random variable X
represents the number showing on the first die, while X5 is
the number showing on the second. In a previous lecture,
we established that when two dice are rolled,

fox=| '] then EB(X)=p=]|5"
X9 3.5
f V=X, +X then Y =gX
where
DT
I N and 3 — [ ) = [11]
L /62 - L 1 -
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The Bivariate Case

In general, if the relationship between Y and X is:

YV —

gX =

11

o
X9

= X1+ X»

Then the relationship between E(Y) and E(X) Is:

E(Y)=pFEX) = 8'p

11

3-0 = 35+35 =17

3.0




The Bivariate Case

Example: Two dice are rolled. The random variable X
represents the number showing on the first die, while X5 is
the number showing on the second. As before,

X = then E(X)=p=|">"

X9 3.5
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The Bivariate Case

Example: Two dice are rolled. The random variable X
represents the number showing on the first die, while X5 is
the number showing on the second. As before,

3.5 |
then FE(X)=p=
X9 3.5

If X =

|f Y = X1 — Xo then Y:ﬁ/X
and

EY)=EX) = 8 = [1 —1] gi —35-35 = 0
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The Bivariate Case

Example: A bivariate random variable X is defined as

If X =

where X7 Is a Poisson random variable with \1 = 2 and X5
IS a Poisson random variable with \, = 3.

What is the expected value of the random variable
Y =2X; — Xu?
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The Bivariate Case

Example: A bivariate random variable X is defined as

If X =

where X7 Is a Poisson random variable with \1 = 2 and X5
IS a Poisson random variable with \, = 3.

What is the expected value of the random variable
Y =2X; — Xu?

From the properties of the Poisson distribution, its expected
value is )\, so

E(X) = — —
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TheBivariate Case

Then

Y =2X,- Xy = f/X where § =
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TheBivariate Case

Then
Y =2X1— X9 = /X where § =
And
E(Y)=FE(X) = fu=[2 —1]
o
= [2 —1] 5| = 2:24(—1)-3
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TheBivariate Case

Then

, 2
Y =2X1—-Xo = X where [ = .

And ]
A

E(Y)=FEX) = 0 =2 1|

e

=21, =2-24(-1)-3 =1

The expected value of Y Is 1.




The Bivariate Case

Example: A bivariate random variable X is defined as

If X =

where X; is a Bernoulli random variable with probability of

success p; = 0.4 and X5 I1s a Bernoulli random variable with
po = 0.5.

What is the expected value of the random variable
Y = X7+ X7
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The Bivariate Case

Example: A bivariate random variable X is defined as

If X =

where X; is a Bernoulli random variable with probability of
success p; = 0.4 and X5 I1s a Bernoulli random variable with

po = 0.5.
What is the expected value of the random variable
Y = X7+ X7

From the properties of the Bernoulli distribution, its
expected value is the probability of success p, so

E(X) =

X9 D2 U.o

LE(X1) p1 0.4
e
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TheBivariate Case

Then

Y=X1+Xy, = X where g =
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TheBivariate Case

Then
Y =X;+Xy, = X where 5 =
And ] ]
E(Y)=FEX) = fp = [11]| "
_p2 -
0.4 ]
= (11 = 1-04+1-0.5 = 0.9
[ ] 0.5
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TheBivariate Case

Then
1
Y =X1+Xo = X where g = |
And L
p
E(Y)=8EBEX) = fu=[1]""
_p2_
0.4
g 2 = 1044105 = 09
0.5

The expected value of Y is 0.9.




The Bivariate Case

Example: A bivariate random variable X is defined as

If X =

where X; is a Poisson random variable with parameter
A =4 and X, Is a geometric random variable with p = 0.5.

What is the expected value of the random variable
Y = X1+ 2X57
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The Bivariate Case

Example: A bivariate random variable X is defined as

If X =

where X; is a Poisson random variable with parameter
A =4 and X, Is a geometric random variable with p = 0.5.

What is the expected value of the random variable
Y = X1+ 2X57

From the properties of the Bernoulli distribution, its
expected value is the probability of success p, so

B(X) — E(X1) | _ A K

E(X>) (1—p)/p 1
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TheBivariate Case

Then

Y =X1+2Xy = X where j =
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TheBivariate Case

(1-p)/p |

Then
Y =X1+2Xy = X where j =
And
/ / >\
E(Y)=fgE(X) = fu = [12)
U
=12 | =144+2:1 =6
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TheBivariate Case

Then
Y:X1—|—2X2:ﬁ/X where (3 = ;
And
, , A
E(Y)=fgE(X) = fu = [12)
(1-p)/p |
|t 21442126

1

The expected value of Y Is 6.




TheBivariate Case

In summary, if Y = 5'X, where

B = b and FE(X) =
_62_

then

E(Y) = BEX) = [ 5]

231
_M2_

I
=

= SGip1 + Bape
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The Bivariate Case

In summary, if Y = 5'X, where

B = b and FE(X) =
B2 |

then

E(Y) = BEX) = [ 5]

This equation holds regardless of the probability

distributions of X; and X5.

M1
_M2_

M1
_M2_

= SGip1 + Bape




The Bivariate Case

In summary, if Y = 5'X, where

B | E(X)) e
5 5 an (X) (X)) i 0
then
E(Y) = SE(X) = [6 (] Z; = By + Bopis

This equation holds regardless of the probability
distributions of X; and Xos.

The only requirement is that £(X;) and E(X3) must exist.
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