
The Bivariate Case
By a linear combination of two random variables X1 and
X2, we mean a new random variable of the form:

Y = β1X1 + β2X2
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Y = β1X1 + β2X2

Different values of β1 and β2 produce different linear
combinations, including:

The sum X1 + X2: β1 = β2 = 1

The difference X1 − X2: β1 = 1, β2 = −1

The mean (X1 + X2)/2: β1 = β2 = 1/2
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The Bivariate Case
By a linear combination of two random variables X1 and
X2, we mean a new random variable of the form:

Y = β1X1 + β2X2

Different values of β1 and β2 produce different linear
combinations, including:

The sum X1 + X2: β1 = β2 = 1

The difference X1 − X2: β1 = 1, β2 = −1

The mean (X1 + X2)/2: β1 = β2 = 1/2

Less common linear combinations include 3X1 − X2,
X1 − 2X2, X2 − 2X1, and so on.
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The Bivariate Case
There is a simple relationship between the expected value
E(Y ) of a linear combination of two random variables. Let

X =

[

X1

X2

]

E(X) =

[

E(X1)

E(X2)

]

=

[

µ1

µ2

]

= µ
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Values of β for a few linear combinations of X1 and X2 are:

Y = X1 + X2 β =

[

β1
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]

=
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1
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The Bivariate Case
There is a simple relationship between the expected value
E(Y ) of a linear combination of two random variables. Let

X =
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X1

X2

]

E(X) =

[

E(X1)

E(X2)

]

=

[

µ1

µ2

]

= µ

Values of β for a few linear combinations of X1 and X2 are:

Y = X1 + X2 β =

[

β1

β2

]

=

[

1

1

]

Y = X1 − X2 β =

[

β1

β2

]

=

[

1

−1

]
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The Bivariate Case

Y = X1 + 2X2 β =

[

β1

β2

]

=

[

1

2

]
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The Bivariate Case

Y = X1 + 2X2 β =

[

β1

β2

]

=

[

1

2

]

Y =
1

2
(X1 + X2) β =

[

β1

β2

]

=

[

1/2

1/2

]
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The Bivariate Case

Y = X1 + 2X2 β =

[

β1

β2

]

=

[

1

2

]

Y =
1

2
(X1 + X2) β =

[

β1

β2

]

=

[

1/2

1/2

]

Y = 3X1 β =

[

β1

β2

]

=

[

3

0

]
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The Bivariate Case
Example: Two dice are rolled. The random variable X1

represents the number showing on the first die, while X2 is
the number showing on the second. In a previous lecture,
we established that when two dice are rolled,

If X =

[

X1

X2

]

then E(X) = µ =

[

3.5

3.5

]
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The Bivariate Case
Example: Two dice are rolled. The random variable X1

represents the number showing on the first die, while X2 is
the number showing on the second. In a previous lecture,
we established that when two dice are rolled,

If X =

[

X1

X2

]

then E(X) = µ =

[

3.5

3.5

]

If Y = X1 + X2 then Y = β′X

where

β =

[

β1

β2

]

=

[

1

1

]

and β′ = [β1 β2] = [1 1]
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The Bivariate Case
In general, if the relationship between Y and X is:

Y = β′X = [1 1]

[

X1

X2

]

= X1 + X2

Then the relationship between E(Y ) and E(X) is:

E(Y ) = β′E(X) = β′µ = [1 1]

[

3.5

3.5

]

= 3.5 + 3.5 = 7
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The Bivariate Case
Example: Two dice are rolled. The random variable X1

represents the number showing on the first die, while X2 is
the number showing on the second. As before,

If X =

[

X1

X2

]

then E(X) = µ =

[

3.5

3.5

]
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The Bivariate Case
Example: Two dice are rolled. The random variable X1

represents the number showing on the first die, while X2 is
the number showing on the second. As before,

If X =

[

X1

X2

]

then E(X) = µ =

[

3.5

3.5

]

If Y = X1 − X2 then Y = β′X

and

E(Y ) = β′E(X) = β′µ = [1 − 1]

[

3.5

3.5

]

= 3.5 − 3.5 = 0
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The Bivariate Case
Example: A bivariate random variable X is defined as

If X =

[

X1

X2

]

where X1 is a Poisson random variable with λ1 = 2 and X2

is a Poisson random variable with λ2 = 3.

What is the expected value of the random variable
Y = 2X1 − X2?

Linear Combinations – p. 7/13



The Bivariate Case
Example: A bivariate random variable X is defined as

If X =

[

X1

X2

]

where X1 is a Poisson random variable with λ1 = 2 and X2

is a Poisson random variable with λ2 = 3.

What is the expected value of the random variable
Y = 2X1 − X2?

From the properties of the Poisson distribution, its expected
value is λ, so

E(X) =

[

E(X1)

E(X2)

]

=

[

λ1

λ2

]

=

[

2

3

]
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The Bivariate Case
Then

Y = 2X1 − X2 = β′X where β =

[

2

−1

]

Linear Combinations – p. 8/13



The Bivariate Case
Then

Y = 2X1 − X2 = β′X where β =

[

2

−1

]

And

E(Y ) = β′E(X) = β′µ = [2 − 1]

[

λ1

λ2

]

= [2 − 1]

[

2

3

]

= 2 · 2 + (−1) · 3 = 1
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The Bivariate Case
Then

Y = 2X1 − X2 = β′X where β =

[

2

−1

]

And

E(Y ) = β′E(X) = β′µ = [2 − 1]

[

λ1

λ2

]

= [2 − 1]

[

2

3

]

= 2 · 2 + (−1) · 3 = 1

The expected value of Y is 1.
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The Bivariate Case
Example: A bivariate random variable X is defined as

If X =

[

X1

X2

]

where X1 is a Bernoulli random variable with probability of
success p1 = 0.4 and X2 is a Bernoulli random variable with
p2 = 0.5.

What is the expected value of the random variable
Y = X1 + X2?
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The Bivariate Case
Example: A bivariate random variable X is defined as

If X =

[

X1

X2

]

where X1 is a Bernoulli random variable with probability of
success p1 = 0.4 and X2 is a Bernoulli random variable with
p2 = 0.5.

What is the expected value of the random variable
Y = X1 + X2?

From the properties of the Bernoulli distribution, its
expected value is the probability of success p, so

E(X) =

[

E(X1)

E(X2)

]

=

[

p1

p2

]

=

[

0.4

0.5

]
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The Bivariate Case
Then

Y = X1 + X2 = β′X where β =

[

1

1

]
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The Bivariate Case
Then

Y = X1 + X2 = β′X where β =

[

1

1

]

And

E(Y ) = β′E(X) = β′µ = [1 1]

[

p1

p2

]

= [1 1]

[

0.4

0.5

]

= 1 · 0.4 + 1 · 0.5 = 0.9
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The Bivariate Case
Then

Y = X1 + X2 = β′X where β =

[

1

1

]

And

E(Y ) = β′E(X) = β′µ = [1 1]

[

p1

p2

]

= [1 1]

[

0.4

0.5

]

= 1 · 0.4 + 1 · 0.5 = 0.9

The expected value of Y is 0.9.
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The Bivariate Case
Example: A bivariate random variable X is defined as

If X =

[

X1

X2

]

where X1 is a Poisson random variable with parameter
λ = 4 and X2 is a geometric random variable with p = 0.5.

What is the expected value of the random variable
Y = X1 + 2X2?
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The Bivariate Case
Example: A bivariate random variable X is defined as

If X =

[

X1

X2

]

where X1 is a Poisson random variable with parameter
λ = 4 and X2 is a geometric random variable with p = 0.5.

What is the expected value of the random variable
Y = X1 + 2X2?

From the properties of the Bernoulli distribution, its
expected value is the probability of success p, so

E(X) =

[

E(X1)

E(X2)

]

=

[

λ

(1 − p)/p

]

=

[

4

1

]

Linear Combinations – p. 11/13



The Bivariate Case
Then

Y = X1 + 2X2 = β′X where β =

[

1

2

]
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The Bivariate Case
Then

Y = X1 + 2X2 = β′X where β =

[

1

2

]

And

E(Y ) = β′E(X) = β′µ = [1 2]

[

λ

(1 − p)/p

]

= [1 2]

[

4

1

]

= 1 · 4 + 2 · 1 = 6
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The Bivariate Case
Then

Y = X1 + 2X2 = β′X where β =

[

1

2

]

And

E(Y ) = β′E(X) = β′µ = [1 2]

[

λ

(1 − p)/p

]

= [1 2]

[

4

1

]

= 1 · 4 + 2 · 1 = 6

The expected value of Y is 6.
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The Bivariate Case
In summary, if Y = β′X, where

β =

[

β1

β2

]

and E(X) =

[

E(X1)

E(X2)

]

=

[

µ1

µ2

]

= µ

then

E(Y ) = β′E(X) = [β1 β2]

[

µ1

µ2

]

= β1µ1 + β2µ2
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The Bivariate Case
In summary, if Y = β′X, where

β =

[

β1

β2

]

and E(X) =

[

E(X1)

E(X2)

]

=

[

µ1

µ2

]

= µ

then

E(Y ) = β′E(X) = [β1 β2]

[

µ1

µ2

]

= β1µ1 + β2µ2

This equation holds regardless of the probability
distributions of X1 and X2.
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The Bivariate Case
In summary, if Y = β′X, where

β =

[

β1

β2

]

and E(X) =

[

E(X1)

E(X2)

]

=

[

µ1

µ2

]

= µ

then

E(Y ) = β′E(X) = [β1 β2]

[

µ1

µ2

]

= β1µ1 + β2µ2

This equation holds regardless of the probability
distributions of X1 and X2.

The only requirement is that E(X1) and E(X2) must exist.
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