The Bivariate Case

By a linear combination of two random variables X_{1} and X_{2}, we mean a new random variable of the form:

$$
Y=\beta_{1} X_{1}+\beta_{2} X_{2}
$$

The Bivariate Case

By a linear combination of two random variables X_{1} and X_{2}, we mean a new random variable of the form:

$$
Y=\beta_{1} X_{1}+\beta_{2} X_{2}
$$

Different values of β_{1} and β_{2} produce different linear combinations, including:

- The sum $X_{1}+X_{2}$: $\beta_{1}=\beta_{2}=1$
- The difference $X_{1}-X_{2}: \quad \beta_{1}=1, \beta_{2}=-1$
- The mean $\left(X_{1}+X_{2}\right) / 2: \quad \beta_{1}=\beta_{2}=1 / 2$

The Bivariate Case

By a linear combination of two random variables X_{1} and X_{2}, we mean a new random variable of the form:

$$
Y=\beta_{1} X_{1}+\beta_{2} X_{2}
$$

Different values of β_{1} and β_{2} produce different linear combinations, including:

- The sum $X_{1}+X_{2}$: $\beta_{1}=\beta_{2}=1$
- The difference $X_{1}-X_{2}: \quad \beta_{1}=1, \beta_{2}=-1$
- The mean $\left(X_{1}+X_{2}\right) / 2: \quad \beta_{1}=\beta_{2}=1 / 2$

Less common linear combinations include $3 X_{1}-X_{2}$, $X_{1}-2 X_{2}, X_{2}-2 X_{1}$, and so on.

The Bivariate Case

There is a simple relationship between the expected value $E(Y)$ of a linear combination of two random variables. Let

$$
X=\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right] \quad E(X)=\left[\begin{array}{l}
E\left(X_{1}\right) \\
E\left(X_{2}\right)
\end{array}\right]=\left[\begin{array}{l}
\mu_{1} \\
\mu_{2}
\end{array}\right]=\mu
$$

The Bivariate Case

There is a simple relationship between the expected value $E(Y)$ of a linear combination of two random variables. Let

$$
X=\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right] \quad E(X)=\left[\begin{array}{l}
E\left(X_{1}\right) \\
E\left(X_{2}\right)
\end{array}\right]=\left[\begin{array}{l}
\mu_{1} \\
\mu_{2}
\end{array}\right]=\mu
$$

Values of β for a few linear combinations of X_{1} and X_{2} are:

$$
Y=X_{1}+X_{2} \quad \beta=\left[\begin{array}{l}
\beta_{1} \\
\beta_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

The Bivariate Case

There is a simple relationship between the expected value $E(Y)$ of a linear combination of two random variables. Let

$$
X=\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right] \quad E(X)=\left[\begin{array}{l}
E\left(X_{1}\right) \\
E\left(X_{2}\right)
\end{array}\right]=\left[\begin{array}{l}
\mu_{1} \\
\mu_{2}
\end{array}\right]=\mu
$$

Values of β for a few linear combinations of X_{1} and X_{2} are:

$$
\begin{gathered}
Y=X_{1}+X_{2} \quad \beta=\left[\begin{array}{l}
\beta_{1} \\
\beta_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
Y=X_{1}-X_{2} \quad \beta=\left[\begin{array}{l}
\beta_{1} \\
\beta_{2}
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
\end{gathered}
$$

The Bivariate Case

$$
Y=X_{1}+2 X_{2} \quad \beta=\left[\begin{array}{l}
\beta_{1} \\
\beta_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

The Bivariate Case

$$
\begin{gathered}
Y=X_{1}+2 X_{2} \quad \beta=\left[\begin{array}{l}
\beta_{1} \\
\beta_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \\
Y=\frac{1}{2}\left(X_{1}+X_{2}\right) \quad \beta=\left[\begin{array}{l}
\beta_{1} \\
\beta_{2}
\end{array}\right]=\left[\begin{array}{l}
1 / 2 \\
1 / 2
\end{array}\right]
\end{gathered}
$$

The Bivariate Case

$$
\begin{gathered}
Y=X_{1}+2 X_{2} \quad \beta=\left[\begin{array}{l}
\beta_{1} \\
\beta_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \\
Y=\frac{1}{2}\left(X_{1}+X_{2}\right) \quad \beta=\left[\begin{array}{l}
\beta_{1} \\
\beta_{2}
\end{array}\right]=\left[\begin{array}{l}
1 / 2 \\
1 / 2
\end{array}\right] \\
Y=3 X_{1} \quad \beta=\left[\begin{array}{l}
\beta_{1} \\
\beta_{2}
\end{array}\right]=\left[\begin{array}{l}
3 \\
0
\end{array}\right]
\end{gathered}
$$

The Bivariate Case

Example: Two dice are rolled. The random variable X_{1} represents the number showing on the first die, while X_{2} is the number showing on the second. In a previous lecture, we established that when two dice are rolled,

$$
\text { If } X=\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right] \quad \text { then } E(X)=\mu=\left[\begin{array}{l}
3.5 \\
3.5
\end{array}\right]
$$

The Bivariate Case

Example: Two dice are rolled. The random variable X_{1} represents the number showing on the first die, while X_{2} is the number showing on the second. In a previous lecture, we established that when two dice are rolled,

$$
\text { If } X=\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right] \quad \text { then } E(X)=\mu=\left[\begin{array}{l}
3.5 \\
3.5
\end{array}\right]
$$

If $Y=X_{1}+X_{2}$ then $Y=\beta^{\prime} X$
where

$$
\beta=\left[\begin{array}{l}
\beta_{1} \\
\beta_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad \text { and } \quad \beta^{\prime}=\left[\begin{array}{ll}
\beta_{1} & \beta_{2}
\end{array}\right]=\left[\begin{array}{ll}
1 & 1
\end{array}\right]
$$

The Bivariate Case

In general, if the relationship between Y and X is:

$$
Y=\beta^{\prime} X=\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]=X_{1}+X_{2}
$$

Then the relationship between $E(Y)$ and $E(X)$ is:

$$
E(Y)=\beta^{\prime} E(X)=\beta^{\prime} \mu=\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left[\begin{array}{l}
3.5 \\
3.5
\end{array}\right]=3.5+3.5=7
$$

The Bivariate Case

Example: Two dice are rolled. The random variable X_{1} represents the number showing on the first die, while X_{2} is the number showing on the second. As before,

$$
\text { If } X=\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right] \quad \text { then } E(X)=\mu=\left[\begin{array}{l}
3.5 \\
3.5
\end{array}\right]
$$

The Bivariate Case

Example: Two dice are rolled. The random variable X_{1} represents the number showing on the first die, while X_{2} is the number showing on the second. As before,

$$
\text { If } \quad X=\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right] \quad \text { then } \quad E(X)=\mu=\left[\begin{array}{l}
3.5 \\
3.5
\end{array}\right]
$$

If $\quad Y=X_{1}-X_{2}$ then $Y=\beta^{\prime} X$
and

$$
E(Y)=\beta^{\prime} E(X)=\beta^{\prime} \mu=[1-1]\left[\begin{array}{l}
3.5 \\
3.5
\end{array}\right]=3.5-3.5=0
$$

The Bivariate Case

Example: A bivariate random variable X is defined as

$$
\text { If } \quad X=\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]
$$

where X_{1} is a Poisson random variable with $\lambda_{1}=2$ and X_{2} is a Poisson random variable with $\lambda_{2}=3$.
What is the expected value of the random variable $Y=2 X_{1}-X_{2}$?

The Bivariate Case

Example: A bivariate random variable X is defined as

$$
\text { If } \quad X=\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]
$$

where X_{1} is a Poisson random variable with $\lambda_{1}=2$ and X_{2} is a Poisson random variable with $\lambda_{2}=3$.
What is the expected value of the random variable $Y=2 X_{1}-X_{2}$?
From the properties of the Poisson distribution, its expected value is λ, so

$$
E(X)=\left[\begin{array}{l}
E\left(X_{1}\right) \\
E\left(X_{2}\right)
\end{array}\right]=\left[\begin{array}{l}
\lambda_{1} \\
\lambda_{2}
\end{array}\right]=\left[\begin{array}{l}
2 \\
3
\end{array}\right]
$$

The Bivariate Case

Then

$$
Y=2 X_{1}-X_{2}=\beta^{\prime} X \quad \text { where } \quad \beta=\left[\begin{array}{c}
2 \\
-1
\end{array}\right]
$$

The Bivariate Case

Then

$$
Y=2 X_{1}-X_{2}=\beta^{\prime} X \quad \text { where } \quad \beta=\left[\begin{array}{c}
2 \\
-1
\end{array}\right]
$$

And

$$
\begin{aligned}
& E(Y)=\beta^{\prime} E(X)=\beta^{\prime} \mu=\left[\begin{array}{ll}
2 & -1
\end{array}\right]\left[\begin{array}{l}
\lambda_{1} \\
\lambda_{2}
\end{array}\right] \\
& =\left[\begin{array}{ll}
2 & -1
\end{array}\right]\left[\begin{array}{l}
2 \\
3
\end{array}\right]=2 \cdot 2+(-1) \cdot 3=1
\end{aligned}
$$

The Bivariate Case

Then

$$
Y=2 X_{1}-X_{2}=\beta^{\prime} X \quad \text { where } \quad \beta=\left[\begin{array}{c}
2 \\
-1
\end{array}\right]
$$

And

$$
\begin{aligned}
& E(Y)=\beta^{\prime} E(X)=\beta^{\prime} \mu=\left[\begin{array}{ll}
2 & -1
\end{array}\right]\left[\begin{array}{l}
\lambda_{1} \\
\lambda_{2}
\end{array}\right] \\
& =\left[\begin{array}{ll}
2 & -1
\end{array}\right]\left[\begin{array}{l}
2 \\
3
\end{array}\right]=2 \cdot 2+(-1) \cdot 3=1
\end{aligned}
$$

The expected value of Y is 1 .

The Bivariate Case

Example: A bivariate random variable X is defined as

$$
\text { If } \quad X=\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]
$$

where X_{1} is a Bernoulli random variable with probability of success $p_{1}=0.4$ and X_{2} is a Bernoulli random variable with $p_{2}=0.5$.
What is the expected value of the random variable $Y=X_{1}+X_{2}$?

The Bivariate Case

Example: A bivariate random variable X is defined as

$$
\text { If } \quad X=\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]
$$

where X_{1} is a Bernoulli random variable with probability of success $p_{1}=0.4$ and X_{2} is a Bernoulli random variable with $p_{2}=0.5$.
What is the expected value of the random variable $Y=X_{1}+X_{2}$?
From the properties of the Bernoulli distribution, its expected value is the probability of success p, so

$$
E(X)=\left[\begin{array}{l}
E\left(X_{1}\right) \\
E\left(X_{2}\right)
\end{array}\right]=\left[\begin{array}{l}
p_{1} \\
p_{2}
\end{array}\right]=\left[\begin{array}{l}
0.4 \\
0.5
\end{array}\right]
$$

The Bivariate Case

Then

$$
Y=X_{1}+X_{2}=\beta^{\prime} X \quad \text { where } \quad \beta=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

The Bivariate Case

Then

$$
Y=X_{1}+X_{2}=\beta^{\prime} X \quad \text { where } \quad \beta=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

And

$$
\begin{aligned}
& E(Y)=\beta^{\prime} E(X)=\beta^{\prime} \mu=\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left[\begin{array}{l}
p_{1} \\
p_{2}
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left[\begin{array}{c}
0.4 \\
0.5
\end{array}\right]=1 \cdot 0.4+1 \cdot 0.5=0.9
\end{aligned}
$$

The Bivariate Case

Then

$$
Y=X_{1}+X_{2}=\beta^{\prime} X \quad \text { where } \quad \beta=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

And

$$
\begin{aligned}
& E(Y)=\beta^{\prime} E(X)=\beta^{\prime} \mu=\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left[\begin{array}{l}
p_{1} \\
p_{2}
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left[\begin{array}{l}
0.4 \\
0.5
\end{array}\right]=1 \cdot 0.4+1 \cdot 0.5=0.9
\end{aligned}
$$

The expected value of Y is 0.9 .

The Bivariate Case

Example: A bivariate random variable X is defined as

$$
\text { If } \quad X=\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]
$$

where X_{1} is a Poisson random variable with parameter $\lambda=4$ and X_{2} is a geometric random variable with $p=0.5$.
What is the expected value of the random variable $Y=X_{1}+2 X_{2}$?

The Bivariate Case

Example: A bivariate random variable X is defined as

$$
\text { If } \quad X=\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]
$$

where X_{1} is a Poisson random variable with parameter $\lambda=4$ and X_{2} is a geometric random variable with $p=0.5$.
What is the expected value of the random variable $Y=X_{1}+2 X_{2}$?
From the properties of the Bernoulli distribution, its expected value is the probability of success p, so

$$
E(X)=\left[\begin{array}{l}
E\left(X_{1}\right) \\
E\left(X_{2}\right)
\end{array}\right]=\left[\begin{array}{c}
\lambda \\
(1-p) / p
\end{array}\right]=\left[\begin{array}{l}
4 \\
1
\end{array}\right]
$$

The Bivariate Case

Then

$$
Y=X_{1}+2 X_{2}=\beta^{\prime} X \quad \text { where } \quad \beta=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

The Bivariate Case

Then

$$
Y=X_{1}+2 X_{2}=\beta^{\prime} X \quad \text { where } \quad \beta=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

And

$$
\begin{aligned}
E(Y) & =\beta^{\prime} E(X)=\beta^{\prime} \mu=\left[\begin{array}{ll}
1 & 2
\end{array}\right]\left[\begin{array}{c}
\lambda \\
(1-p) / p
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 2
\end{array}\right]\left[\begin{array}{l}
4 \\
1
\end{array}\right]=1 \cdot 4+2 \cdot 1=6
\end{aligned}
$$

The Bivariate Case

Then

$$
Y=X_{1}+2 X_{2}=\beta^{\prime} X \quad \text { where } \quad \beta=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

And

$$
\begin{aligned}
E(Y) & =\beta^{\prime} E(X)=\beta^{\prime} \mu=\left[\begin{array}{ll}
1 & 2
\end{array}\right]\left[\begin{array}{c}
\lambda \\
(1-p) / p
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 2
\end{array}\right]\left[\begin{array}{l}
4 \\
1
\end{array}\right]=1 \cdot 4+2 \cdot 1=6
\end{aligned}
$$

The expected value of Y is 6 .

The Bivariate Case

In summary, if $Y=\beta^{\prime} X$, where

$$
\beta=\left[\begin{array}{l}
\beta_{1} \\
\beta_{2}
\end{array}\right] \quad \text { and } \quad E(X)=\left[\begin{array}{l}
E\left(X_{1}\right) \\
E\left(X_{2}\right)
\end{array}\right]=\left[\begin{array}{l}
\mu_{1} \\
\mu_{2}
\end{array}\right]=\mu
$$

then

$$
E(Y)=\beta^{\prime} E(X)=\left[\beta_{1} \beta_{2}\right]\left[\begin{array}{l}
\mu_{1} \\
\mu_{2}
\end{array}\right]=\beta_{1} \mu_{1}+\beta_{2} \mu_{2}
$$

The Bivariate Case

In summary, if $Y=\beta^{\prime} X$, where

$$
\beta=\left[\begin{array}{l}
\beta_{1} \\
\beta_{2}
\end{array}\right] \quad \text { and } \quad E(X)=\left[\begin{array}{l}
E\left(X_{1}\right) \\
E\left(X_{2}\right)
\end{array}\right]=\left[\begin{array}{l}
\mu_{1} \\
\mu_{2}
\end{array}\right]=\mu
$$

then

$$
E(Y)=\beta^{\prime} E(X)=\left[\beta_{1} \beta_{2}\right]\left[\begin{array}{l}
\mu_{1} \\
\mu_{2}
\end{array}\right]=\beta_{1} \mu_{1}+\beta_{2} \mu_{2}
$$

This equation holds regardless of the probability distributions of X_{1} and X_{2}.

The Bivariate Case

In summary, if $Y=\beta^{\prime} X$, where

$$
\beta=\left[\begin{array}{l}
\beta_{1} \\
\beta_{2}
\end{array}\right] \quad \text { and } \quad E(X)=\left[\begin{array}{l}
E\left(X_{1}\right) \\
E\left(X_{2}\right)
\end{array}\right]=\left[\begin{array}{l}
\mu_{1} \\
\mu_{2}
\end{array}\right]=\mu
$$

then

$$
E(Y)=\beta^{\prime} E(X)=\left[\beta_{1} \beta_{2}\right]\left[\begin{array}{l}
\mu_{1} \\
\mu_{2}
\end{array}\right]=\beta_{1} \mu_{1}+\beta_{2} \mu_{2}
$$

This equation holds regardless of the probability distributions of X_{1} and X_{2}.
The only requirement is that $E\left(X_{1}\right)$ and $E\left(X_{2}\right)$ must exist.

