By a **linear combination** of two random variables X_1 and X_2 , we mean a new random variable of the form:

 $Y = \beta_1 X_1 + \beta_2 X_2$

By a **linear combination** of two random variables X_1 and X_2 , we mean a new random variable of the form:

 $Y = \beta_1 X_1 + \beta_2 X_2$

Different values of β_1 and β_2 produce different linear combinations, including:

- The sum $X_1 + X_2$: $\beta_1 = \beta_2 = 1$
- The difference $X_1 X_2$: $\beta_1 = 1, \ \beta_2 = -1$
- The mean $(X_1 + X_2)/2$: $\beta_1 = \beta_2 = 1/2$

By a **linear combination** of two random variables X_1 and X_2 , we mean a new random variable of the form:

 $Y = \beta_1 X_1 + \beta_2 X_2$

Different values of β_1 and β_2 produce different linear combinations, including:

- The sum $X_1 + X_2$: $\beta_1 = \beta_2 = 1$
- The difference $X_1 X_2$: $\beta_1 = 1, \ \beta_2 = -1$
- The mean $(X_1 + X_2)/2$: $\beta_1 = \beta_2 = 1/2$

Less common linear combinations include $3X_1 - X_2$, $X_1 - 2X_2$, $X_2 - 2X_1$, and so on.

There is a simple relationship between the expected value E(Y) of a linear combination of two random variables. Let

$$X = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \quad E(X) = \begin{bmatrix} E(X_1) \\ E(X_2) \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} = \mu$$

There is a simple relationship between the expected value E(Y) of a linear combination of two random variables. Let

$$X = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \quad E(X) = \begin{bmatrix} E(X_1) \\ E(X_2) \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} = \mu$$

Values of β for a few linear combinations of X_1 and X_2 are:

$$Y = X_1 + X_2 \qquad \beta = \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

There is a simple relationship between the expected value E(Y) of a linear combination of two random variables. Let

$$X = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \quad E(X) = \begin{bmatrix} E(X_1) \\ E(X_2) \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} = \mu$$

Values of β for a few linear combinations of X_1 and X_2 are:

$$Y = X_1 + X_2 \qquad \beta = \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$Y = X_1 - X_2 \qquad \beta = \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$Y = X_1 + 2X_2 \qquad \beta = \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$Y = X_1 + 2X_2 \qquad \beta = \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
$$Y = \frac{1}{2}(X_1 + X_2) \qquad \beta = \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix}$$

$$Y = X_1 + 2X_2 \qquad \beta = \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$Y = \frac{1}{2}(X_1 + X_2) \qquad \beta = \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix}$$

$$Y = 3X_1 \qquad \beta = \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$$

Example: Two dice are rolled. The random variable X_1 represents the number showing on the first die, while X_2 is the number showing on the second. In a previous lecture, we established that when two dice are rolled,

If
$$X = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$$
 then $E(X) = \mu = \begin{bmatrix} 3.5 \\ 3.5 \end{bmatrix}$

Example: Two dice are rolled. The random variable X_1 represents the number showing on the first die, while X_2 is the number showing on the second. In a previous lecture, we established that when two dice are rolled,

If
$$X = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$$
 then $E(X) = \mu = \begin{bmatrix} 3.5 \\ 3.5 \end{bmatrix}$

If $Y = X_1 + X_2$ then $Y = \beta' X$

where

$$\beta = \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \text{ and } \beta' = [\beta_1 \beta_2] = [1 \ 1]$$

In general, if the relationship between Y and X is:

$$Y = \beta' X = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = X_1 + X_2$$

Then the relationship between E(Y) and E(X) is:

$$E(Y) = \beta' E(X) = \beta' \mu = [1 \ 1] \begin{bmatrix} 3.5 \\ 3.5 \end{bmatrix} = 3.5 + 3.5 = 7$$

Example: Two dice are rolled. The random variable X_1 represents the number showing on the first die, while X_2 is the number showing on the second. As before,

If
$$X = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$$
 then $E(X) = \mu = \begin{bmatrix} 3.5 \\ 3.5 \end{bmatrix}$

Example: Two dice are rolled. The random variable X_1 represents the number showing on the first die, while X_2 is the number showing on the second. As before,

If
$$X = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$$
 then $E(X) = \mu = \begin{bmatrix} 3.5 \\ 3.5 \end{bmatrix}$

If $Y = X_1 - X_2$ then $Y = \beta' X$

and

$$E(Y) = \beta' E(X) = \beta' \mu = [1 - 1] \begin{bmatrix} 3.5 \\ 3.5 \end{bmatrix} = 3.5 - 3.5 = 0$$

Example: A bivariate random variable *X* is defined as

$$f \quad X = \left[\begin{array}{c} X_1 \\ X_2 \end{array} \right]$$

where X_1 is a Poisson random variable with $\lambda_1 = 2$ and X_2 is a Poisson random variable with $\lambda_2 = 3$.

What is the expected value of the random variable $Y = 2X_1 - X_2$?

Example: A bivariate random variable *X* is defined as

$$\int X = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$$

where X_1 is a Poisson random variable with $\lambda_1 = 2$ and X_2 is a Poisson random variable with $\lambda_2 = 3$.

What is the expected value of the random variable $Y = 2X_1 - X_2$?

From the properties of the Poisson distribution, its expected value is λ , so

$$E(X) = \begin{bmatrix} E(X_1) \\ E(X_2) \end{bmatrix} = \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

Then

$$Y = 2X_1 - X_2 = \beta' X$$
 where $\beta = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$

Then

$$Y = 2X_1 - X_2 = \beta' X$$
 where $\beta = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$

And

$$E(Y) = \beta' E(X) = \beta' \mu = \begin{bmatrix} 2 & -1 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = 2 \cdot 2 + (-1) \cdot 3 = 1$$

Then

$$Y = 2X_1 - X_2 = \beta' X$$
 where $\beta = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$

And

$$E(Y) = \beta' E(X) = \beta' \mu = \begin{bmatrix} 2 & -1 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = 2 \cdot 2 + (-1) \cdot 3 = 1$$

The expected value of Y is 1.

Example: A bivariate random variable *X* is defined as

$$\mathbf{f} \quad X = \left[\begin{array}{c} X_1 \\ X_2 \end{array} \right]$$

where X_1 is a Bernoulli random variable with probability of success $p_1 = 0.4$ and X_2 is a Bernoulli random variable with $p_2 = 0.5$.

What is the expected value of the random variable $Y = X_1 + X_2$?

Example: A bivariate random variable *X* is defined as

$$\mathbf{f} \quad X = \left[\begin{array}{c} X_1 \\ X_2 \end{array} \right]$$

where X_1 is a Bernoulli random variable with probability of success $p_1 = 0.4$ and X_2 is a Bernoulli random variable with $p_2 = 0.5$.

What is the expected value of the random variable $Y = X_1 + X_2$?

From the properties of the Bernoulli distribution, its expected value is the probability of success p, so

$$E(X) = \begin{bmatrix} E(X_1) \\ E(X_2) \end{bmatrix} = \begin{bmatrix} p_1 \\ p_2 \end{bmatrix} = \begin{bmatrix} 0.4 \\ 0.5 \end{bmatrix}$$

Then

$$Y = X_1 + X_2 = \beta' X$$
 where $\beta = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

Then

$$Y = X_1 + X_2 = \beta' X$$
 where $\beta = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

And

$$E(Y) = \beta' E(X) = \beta' \mu = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 0.4 \\ 0.5 \end{bmatrix} = 1 \cdot 0.4 + 1 \cdot 0.5 = 0.9$$

Then

$$Y = X_1 + X_2 = \beta' X$$
 where $\beta = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

And

$$E(Y) = \beta' E(X) = \beta' \mu = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 0.4 \\ 0.5 \end{bmatrix} = 1 \cdot 0.4 + 1 \cdot 0.5 = 0.9$$

The expected value of Y is 0.9.

Example: A bivariate random variable *X* is defined as

$$\mathbf{f} \quad X = \left[\begin{array}{c} X_1 \\ X_2 \end{array} \right]$$

where X_1 is a Poisson random variable with parameter $\lambda = 4$ and X_2 is a geometric random variable with p = 0.5. What is the expected value of the random variable $Y = X_1 + 2X_2$?

Example: A bivariate random variable *X* is defined as

$$\mathbf{f} \quad X = \left[\begin{array}{c} X_1 \\ X_2 \end{array} \right]$$

where X_1 is a Poisson random variable with parameter $\lambda = 4$ and X_2 is a geometric random variable with p = 0.5.

What is the expected value of the random variable $Y = X_1 + 2X_2$?

From the properties of the Bernoulli distribution, its expected value is the probability of success p, so

$$E(X) = \begin{bmatrix} E(X_1) \\ E(X_2) \end{bmatrix} = \begin{bmatrix} \lambda \\ (1-p)/p \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$$

Then

$$Y = X_1 + 2X_2 = \beta' X$$
 where $\beta = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

Then

$$Y = X_1 + 2X_2 = \beta' X$$
 where $\beta = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

And

$$E(Y) = \beta' E(X) = \beta' \mu = [1 \ 2] \begin{bmatrix} \lambda \\ (1-p)/p \end{bmatrix}$$
$$= [1 \ 2] \begin{bmatrix} 4 \\ 1 \end{bmatrix} = 1 \cdot 4 + 2 \cdot 1 = 6$$

Then

$$Y = X_1 + 2X_2 = \beta' X$$
 where $\beta = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

And

$$E(Y) = \beta' E(X) = \beta' \mu = \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} \lambda \\ (1-p)/p \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} 4 \\ 1 \end{bmatrix} = 1 \cdot 4 + 2 \cdot 1 = 6$$

The expected value of Y is 6.

In summary, if $Y = \beta' X$, where

$$\beta = \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix}$$
 and $E(X) = \begin{bmatrix} E(X_1) \\ E(X_2) \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} = \mu$

then

$$E(Y) = \beta' E(X) = \left[\beta_1 \ \beta_2\right] \left[\begin{array}{c} \mu_1 \\ \mu_2 \end{array}\right] = \beta_1 \mu_1 + \beta_2 \mu_2$$

In summary, if $Y = \beta' X$, where

$$\beta = \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix}$$
 and $E(X) = \begin{bmatrix} E(X_1) \\ E(X_2) \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} = \mu$

then

$$E(Y) = \beta' E(X) = \left[\beta_1 \ \beta_2\right] \left[\begin{array}{c} \mu_1 \\ \mu_2 \end{array}\right] = \beta_1 \mu_1 + \beta_2 \mu_2$$

This equation holds regardless of the probability distributions of X_1 and X_2 .

In summary, if $Y = \beta' X$, where

$$\beta = \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix}$$
 and $E(X) = \begin{bmatrix} E(X_1) \\ E(X_2) \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} = \mu$

then

$$E(Y) = \beta' E(X) = \left[\beta_1 \ \beta_2\right] \left[\begin{array}{c} \mu_1 \\ \mu_2 \end{array}\right] = \beta_1 \mu_1 + \beta_2 \mu_2$$

This equation holds regardless of the probability distributions of X_1 and X_2 .

The only requirement is that $E(X_1)$ and $E(X_2)$ must exist.